Cargando…
Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation
Sensing enabled implantable devices and next-generation neurotechnology allow real-time adjustments of invasive neuromodulation. The identification of symptom and disease-specific biomarkers in invasive brain signal recordings has inspired the idea of demand dependent adaptive deep brain stimulation...
Autores principales: | Merk, Timon, Peterson, Victoria, Köhler, Richard, Haufe, Stefan, Richardson, R. Mark, Neumann, Wolf-Julian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521329/ https://www.ncbi.nlm.nih.gov/pubmed/35104499 http://dx.doi.org/10.1016/j.expneurol.2022.113993 |
Ejemplares similares
-
Invasive neurophysiology and whole brain connectomics for neural decoding in patients with brain implants
por: Merk, Timon, et al.
Publicado: (2023) -
Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson’s disease
por: Merk, Timon, et al.
Publicado: (2022) -
Unsupervised Adaptation of Brain-Machine Interface Decoders
por: Gürel, Tayfun, et al.
Publicado: (2012) -
Neurophysiological mechanisms of deep brain stimulation across spatiotemporal resolutions
por: Neumann, Wolf-Julian, et al.
Publicado: (2023) -
Machine learning for adaptive deep brain stimulation in Parkinson’s disease: closing the loop
por: Oliveira, Andreia M., et al.
Publicado: (2023)