Cargando…
Improving the Efficiency and Orthogonality of Genetic Code Expansion
The site-specific incorporation of the noncanonical amino acid (ncAA) into proteins via genetic code expansion (GCE) has enabled the development of new and powerful ways to learn, regulate, and evolve biological functions in vivo. However, cellular biosynthesis of ncAA-containing proteins with high...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521639/ https://www.ncbi.nlm.nih.gov/pubmed/37850140 http://dx.doi.org/10.34133/2022/9896125 |
Sumario: | The site-specific incorporation of the noncanonical amino acid (ncAA) into proteins via genetic code expansion (GCE) has enabled the development of new and powerful ways to learn, regulate, and evolve biological functions in vivo. However, cellular biosynthesis of ncAA-containing proteins with high efficiency and fidelity is a formidable challenge. In this review, we summarize up-to-date progress towards improving the efficiency and orthogonality of GCE and enhancing intracellular compatibility of introduced translation machinery in the living cells by creation and optimization of orthogonal translation components, constructing genomically recoded organism (GRO), utilization of unnatural base pairs (UBP) and quadruplet codons (four-base codons), and spatial separation of orthogonal translation. |
---|