Cargando…

Activating Silent Glycolysis Bypasses in Escherichia coli

All living organisms share similar reactions within their central metabolism to provide precursors for all essential building blocks and reducing power. To identify whether alternative metabolic routes of glycolysis can operate in E. coli, we complementarily employed in silico design, rational engin...

Descripción completa

Detalles Bibliográficos
Autores principales: Iacometti, Camillo, Marx, Katharina, Hönick, Maria, Biletskaia, Viktoria, Schulz-Mirbach, Helena, Dronsella, Beau, Satanowski, Ari, Delmas, Valérie A., Berger, Anne, Dubois, Ivan, Bouzon, Madeleine, Döring, Volker, Noor, Elad, Bar-Even, Arren, Lindner, Steffen N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521649/
https://www.ncbi.nlm.nih.gov/pubmed/37850128
http://dx.doi.org/10.34133/2022/9859643
_version_ 1785110176320192512
author Iacometti, Camillo
Marx, Katharina
Hönick, Maria
Biletskaia, Viktoria
Schulz-Mirbach, Helena
Dronsella, Beau
Satanowski, Ari
Delmas, Valérie A.
Berger, Anne
Dubois, Ivan
Bouzon, Madeleine
Döring, Volker
Noor, Elad
Bar-Even, Arren
Lindner, Steffen N.
author_facet Iacometti, Camillo
Marx, Katharina
Hönick, Maria
Biletskaia, Viktoria
Schulz-Mirbach, Helena
Dronsella, Beau
Satanowski, Ari
Delmas, Valérie A.
Berger, Anne
Dubois, Ivan
Bouzon, Madeleine
Döring, Volker
Noor, Elad
Bar-Even, Arren
Lindner, Steffen N.
author_sort Iacometti, Camillo
collection PubMed
description All living organisms share similar reactions within their central metabolism to provide precursors for all essential building blocks and reducing power. To identify whether alternative metabolic routes of glycolysis can operate in E. coli, we complementarily employed in silico design, rational engineering, and adaptive laboratory evolution. First, we used a genome-scale model and identified two potential pathways within the metabolic network of this organism replacing canonical Embden-Meyerhof-Parnas (EMP) glycolysis to convert phosphosugars into organic acids. One of these glycolytic routes proceeds via methylglyoxal and the other via serine biosynthesis and degradation. Then, we implemented both pathways in E. coli strains harboring defective EMP glycolysis. Surprisingly, the pathway via methylglyoxal seemed to immediately operate in a triosephosphate isomerase deletion strain cultivated on glycerol. By contrast, in a phosphoglycerate kinase deletion strain, the overexpression of methylglyoxal synthase was necessary to restore growth of the strain. Furthermore, we engineered the “serine shunt” which converts 3-phosphoglycerate via serine biosynthesis and degradation to pyruvate, bypassing an enolase deletion. Finally, to explore which of these alternatives would emerge by natural selection, we performed an adaptive laboratory evolution study using an enolase deletion strain. Our experiments suggest that the evolved mutants use the serine shunt. Our study reveals the flexible repurposing of metabolic pathways to create new metabolite links and rewire central metabolism.
format Online
Article
Text
id pubmed-10521649
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher AAAS
record_format MEDLINE/PubMed
spelling pubmed-105216492023-10-17 Activating Silent Glycolysis Bypasses in Escherichia coli Iacometti, Camillo Marx, Katharina Hönick, Maria Biletskaia, Viktoria Schulz-Mirbach, Helena Dronsella, Beau Satanowski, Ari Delmas, Valérie A. Berger, Anne Dubois, Ivan Bouzon, Madeleine Döring, Volker Noor, Elad Bar-Even, Arren Lindner, Steffen N. Biodes Res Research Article All living organisms share similar reactions within their central metabolism to provide precursors for all essential building blocks and reducing power. To identify whether alternative metabolic routes of glycolysis can operate in E. coli, we complementarily employed in silico design, rational engineering, and adaptive laboratory evolution. First, we used a genome-scale model and identified two potential pathways within the metabolic network of this organism replacing canonical Embden-Meyerhof-Parnas (EMP) glycolysis to convert phosphosugars into organic acids. One of these glycolytic routes proceeds via methylglyoxal and the other via serine biosynthesis and degradation. Then, we implemented both pathways in E. coli strains harboring defective EMP glycolysis. Surprisingly, the pathway via methylglyoxal seemed to immediately operate in a triosephosphate isomerase deletion strain cultivated on glycerol. By contrast, in a phosphoglycerate kinase deletion strain, the overexpression of methylglyoxal synthase was necessary to restore growth of the strain. Furthermore, we engineered the “serine shunt” which converts 3-phosphoglycerate via serine biosynthesis and degradation to pyruvate, bypassing an enolase deletion. Finally, to explore which of these alternatives would emerge by natural selection, we performed an adaptive laboratory evolution study using an enolase deletion strain. Our experiments suggest that the evolved mutants use the serine shunt. Our study reveals the flexible repurposing of metabolic pathways to create new metabolite links and rewire central metabolism. AAAS 2022-05-11 /pmc/articles/PMC10521649/ /pubmed/37850128 http://dx.doi.org/10.34133/2022/9859643 Text en Copyright © 2022 Camillo Iacometti et al. https://creativecommons.org/licenses/by/4.0/Exclusive Licensee Nanjing Agricultural University. Distributed under a Creative Commons Attribution License (CC BY 4.0). (https://creativecommons.org/licenses/by/4.0/)
spellingShingle Research Article
Iacometti, Camillo
Marx, Katharina
Hönick, Maria
Biletskaia, Viktoria
Schulz-Mirbach, Helena
Dronsella, Beau
Satanowski, Ari
Delmas, Valérie A.
Berger, Anne
Dubois, Ivan
Bouzon, Madeleine
Döring, Volker
Noor, Elad
Bar-Even, Arren
Lindner, Steffen N.
Activating Silent Glycolysis Bypasses in Escherichia coli
title Activating Silent Glycolysis Bypasses in Escherichia coli
title_full Activating Silent Glycolysis Bypasses in Escherichia coli
title_fullStr Activating Silent Glycolysis Bypasses in Escherichia coli
title_full_unstemmed Activating Silent Glycolysis Bypasses in Escherichia coli
title_short Activating Silent Glycolysis Bypasses in Escherichia coli
title_sort activating silent glycolysis bypasses in escherichia coli
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521649/
https://www.ncbi.nlm.nih.gov/pubmed/37850128
http://dx.doi.org/10.34133/2022/9859643
work_keys_str_mv AT iacometticamillo activatingsilentglycolysisbypassesinescherichiacoli
AT marxkatharina activatingsilentglycolysisbypassesinescherichiacoli
AT honickmaria activatingsilentglycolysisbypassesinescherichiacoli
AT biletskaiaviktoria activatingsilentglycolysisbypassesinescherichiacoli
AT schulzmirbachhelena activatingsilentglycolysisbypassesinescherichiacoli
AT dronsellabeau activatingsilentglycolysisbypassesinescherichiacoli
AT satanowskiari activatingsilentglycolysisbypassesinescherichiacoli
AT delmasvaleriea activatingsilentglycolysisbypassesinescherichiacoli
AT bergeranne activatingsilentglycolysisbypassesinescherichiacoli
AT duboisivan activatingsilentglycolysisbypassesinescherichiacoli
AT bouzonmadeleine activatingsilentglycolysisbypassesinescherichiacoli
AT doringvolker activatingsilentglycolysisbypassesinescherichiacoli
AT noorelad activatingsilentglycolysisbypassesinescherichiacoli
AT barevenarren activatingsilentglycolysisbypassesinescherichiacoli
AT lindnersteffenn activatingsilentglycolysisbypassesinescherichiacoli