Cargando…

A Transparent Ultrasound Array for Real-Time Optical, Ultrasound, and Photoacoustic Imaging

Objective and Impact Statement. Simultaneous imaging of ultrasound and optical contrasts can help map structural, functional, and molecular biomarkers inside living subjects with high spatial resolution. There is a need to develop a platform to facilitate this multimodal imaging capability to improv...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Haoyang, Agrawal, Sumit, Osman, Mohamed, Minotto, Josiah, Mirg, Shubham, Liu, Jinyun, Dangi, Ajay, Tran, Quyen, Jackson, Thomas, Kothapalli, Sri-Rajasekhar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521654/
https://www.ncbi.nlm.nih.gov/pubmed/37850172
http://dx.doi.org/10.34133/2022/9871098
_version_ 1785110177560657920
author Chen, Haoyang
Agrawal, Sumit
Osman, Mohamed
Minotto, Josiah
Mirg, Shubham
Liu, Jinyun
Dangi, Ajay
Tran, Quyen
Jackson, Thomas
Kothapalli, Sri-Rajasekhar
author_facet Chen, Haoyang
Agrawal, Sumit
Osman, Mohamed
Minotto, Josiah
Mirg, Shubham
Liu, Jinyun
Dangi, Ajay
Tran, Quyen
Jackson, Thomas
Kothapalli, Sri-Rajasekhar
author_sort Chen, Haoyang
collection PubMed
description Objective and Impact Statement. Simultaneous imaging of ultrasound and optical contrasts can help map structural, functional, and molecular biomarkers inside living subjects with high spatial resolution. There is a need to develop a platform to facilitate this multimodal imaging capability to improve diagnostic sensitivity and specificity. Introduction. Currently, combining ultrasound, photoacoustic, and optical imaging modalities is challenging because conventional ultrasound transducer arrays are optically opaque. As a result, complex geometries are used to coalign both optical and ultrasound waves in the same field of view. Methods. One elegant solution is to make the ultrasound transducer transparent to light. Here, we demonstrate a novel transparent ultrasound transducer (TUT) linear array fabricated using a transparent lithium niobate piezoelectric material for real-time multimodal imaging. Results. The TUT-array consists of 64 elements and centered at ~6 MHz frequency. We demonstrate a quad-mode ultrasound, Doppler ultrasound, photoacoustic, and fluorescence imaging in real-time using the TUT-array directly coupled to the tissue mimicking phantoms. Conclusion. The TUT-array successfully showed a multimodal imaging capability and has potential applications in diagnosing cancer, neurological, and vascular diseases, including image-guided endoscopy and wearable imaging.
format Online
Article
Text
id pubmed-10521654
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher AAAS
record_format MEDLINE/PubMed
spelling pubmed-105216542023-10-17 A Transparent Ultrasound Array for Real-Time Optical, Ultrasound, and Photoacoustic Imaging Chen, Haoyang Agrawal, Sumit Osman, Mohamed Minotto, Josiah Mirg, Shubham Liu, Jinyun Dangi, Ajay Tran, Quyen Jackson, Thomas Kothapalli, Sri-Rajasekhar BME Front Research Article Objective and Impact Statement. Simultaneous imaging of ultrasound and optical contrasts can help map structural, functional, and molecular biomarkers inside living subjects with high spatial resolution. There is a need to develop a platform to facilitate this multimodal imaging capability to improve diagnostic sensitivity and specificity. Introduction. Currently, combining ultrasound, photoacoustic, and optical imaging modalities is challenging because conventional ultrasound transducer arrays are optically opaque. As a result, complex geometries are used to coalign both optical and ultrasound waves in the same field of view. Methods. One elegant solution is to make the ultrasound transducer transparent to light. Here, we demonstrate a novel transparent ultrasound transducer (TUT) linear array fabricated using a transparent lithium niobate piezoelectric material for real-time multimodal imaging. Results. The TUT-array consists of 64 elements and centered at ~6 MHz frequency. We demonstrate a quad-mode ultrasound, Doppler ultrasound, photoacoustic, and fluorescence imaging in real-time using the TUT-array directly coupled to the tissue mimicking phantoms. Conclusion. The TUT-array successfully showed a multimodal imaging capability and has potential applications in diagnosing cancer, neurological, and vascular diseases, including image-guided endoscopy and wearable imaging. AAAS 2022-06-08 /pmc/articles/PMC10521654/ /pubmed/37850172 http://dx.doi.org/10.34133/2022/9871098 Text en Copyright © 2022 Haoyang Chen et al. https://creativecommons.org/licenses/by/4.0/Exclusive Licensee Suzhou Institute of Biomedical Engineering and Technology, CAS. Distributed under a Creative Commons Attribution License (CC BY 4.0). (https://creativecommons.org/licenses/by/4.0/)
spellingShingle Research Article
Chen, Haoyang
Agrawal, Sumit
Osman, Mohamed
Minotto, Josiah
Mirg, Shubham
Liu, Jinyun
Dangi, Ajay
Tran, Quyen
Jackson, Thomas
Kothapalli, Sri-Rajasekhar
A Transparent Ultrasound Array for Real-Time Optical, Ultrasound, and Photoacoustic Imaging
title A Transparent Ultrasound Array for Real-Time Optical, Ultrasound, and Photoacoustic Imaging
title_full A Transparent Ultrasound Array for Real-Time Optical, Ultrasound, and Photoacoustic Imaging
title_fullStr A Transparent Ultrasound Array for Real-Time Optical, Ultrasound, and Photoacoustic Imaging
title_full_unstemmed A Transparent Ultrasound Array for Real-Time Optical, Ultrasound, and Photoacoustic Imaging
title_short A Transparent Ultrasound Array for Real-Time Optical, Ultrasound, and Photoacoustic Imaging
title_sort transparent ultrasound array for real-time optical, ultrasound, and photoacoustic imaging
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521654/
https://www.ncbi.nlm.nih.gov/pubmed/37850172
http://dx.doi.org/10.34133/2022/9871098
work_keys_str_mv AT chenhaoyang atransparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging
AT agrawalsumit atransparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging
AT osmanmohamed atransparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging
AT minottojosiah atransparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging
AT mirgshubham atransparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging
AT liujinyun atransparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging
AT dangiajay atransparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging
AT tranquyen atransparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging
AT jacksonthomas atransparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging
AT kothapallisrirajasekhar atransparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging
AT chenhaoyang transparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging
AT agrawalsumit transparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging
AT osmanmohamed transparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging
AT minottojosiah transparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging
AT mirgshubham transparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging
AT liujinyun transparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging
AT dangiajay transparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging
AT tranquyen transparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging
AT jacksonthomas transparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging
AT kothapallisrirajasekhar transparentultrasoundarrayforrealtimeopticalultrasoundandphotoacousticimaging