Cargando…
Breast Cancer Induced Bone Osteolysis Prediction Using Temporal Variational Autoencoders
Objective and Impact Statement. We adopt a deep learning model for bone osteolysis prediction on computed tomography (CT) images of murine breast cancer bone metastases. Given the bone CT scans at previous time steps, the model incorporates the bone-cancer interactions learned from the sequential im...
Autores principales: | Xiong, Wei, Yeung, Neil, Wang, Shubo, Liao, Haofu, Wang, Liyun, Luo, Jiebo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521666/ https://www.ncbi.nlm.nih.gov/pubmed/37850158 http://dx.doi.org/10.34133/2022/9763284 |
Ejemplares similares
-
Spiking Autoencoders With Temporal Coding
por: Comşa, Iulia-Maria, et al.
Publicado: (2021) -
Sclerostin induced tumor growth, bone metastasis and osteolysis in breast cancer
por: Zhu, Menghai, et al.
Publicado: (2017) -
Quantum Variational AutoEncoder
por: Vinci, Walter
Publicado: (2018) -
Predicting Aging of Brain Metabolic Topography Using Variational Autoencoder
por: Choi, Hongyoon, et al.
Publicado: (2018) -
Predicting chemotherapy response using a variational autoencoder approach
por: Wei, Qi, et al.
Publicado: (2021)