Cargando…
Functional Photoacoustic and Ultrasonic Assessment of Osteoporosis: A Clinical Feasibility Study
Objective and Impact Statement. To study the feasibility of combined functional photoacoustic (PA) and quantitative ultrasound (US) for diagnosis of osteoporosis in vivo based on the detection of chemical and microarchitecture (BMA) information in calcaneus bone. Introduction. Clinically available X...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521673/ https://www.ncbi.nlm.nih.gov/pubmed/37849970 http://dx.doi.org/10.34133/2020/1081540 |
_version_ | 1785110181959434240 |
---|---|
author | Feng, Ting Zhu, Yunhao Morris, Richard Kozloff, Kenneth M. Wang, Xueding |
author_facet | Feng, Ting Zhu, Yunhao Morris, Richard Kozloff, Kenneth M. Wang, Xueding |
author_sort | Feng, Ting |
collection | PubMed |
description | Objective and Impact Statement. To study the feasibility of combined functional photoacoustic (PA) and quantitative ultrasound (US) for diagnosis of osteoporosis in vivo based on the detection of chemical and microarchitecture (BMA) information in calcaneus bone. Introduction. Clinically available X-ray or US technologies for the diagnosis of osteoporosis do not report important parameters such as chemical information and BMA. With unique advantages, including good sensitivity to molecular and metabolic properties, PA bone assessment techniques hold a great potential for clinical translation. Methods. By performing multiwavelength PA measurements, the chemical information in the human calcaneus bone, including mineral, lipid, oxygenated-hemoglobin, and deoxygenated-hemoglobin, were assessed. In parallel, by performing PA spectrum analysis, the BMA as an important bone physical property was quantified. An unpaired [Formula: see text]-test and a two-way ANOVA test were conducted to compare the outcomes from the two subject groups. Results. Multiwavelength PA measurement is capable of assessing the relative contents of several chemical components in the trabecular bone in vivo, including both minerals and organic materials such as oxygenated-hemoglobin, deoxygenated-hemoglobin, and lipid, which are relevant to metabolic activities and bone health. In addition, PA measurements of BMA show good correlations ([Formula: see text] up to 0.65) with DEXA. Both the chemical and microarchitectural measurements from PA techniques can differentiate the two subject groups. Conclusion. The results from this initial clinical study suggest that PA techniques, by providing additional chemical and microarchitecture information relevant to bone health, may lead to accurate and early diagnosis, as well as sensitive monitoring of the treatment of osteoporosis. |
format | Online Article Text |
id | pubmed-10521673 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | AAAS |
record_format | MEDLINE/PubMed |
spelling | pubmed-105216732023-10-17 Functional Photoacoustic and Ultrasonic Assessment of Osteoporosis: A Clinical Feasibility Study Feng, Ting Zhu, Yunhao Morris, Richard Kozloff, Kenneth M. Wang, Xueding BME Front Research Article Objective and Impact Statement. To study the feasibility of combined functional photoacoustic (PA) and quantitative ultrasound (US) for diagnosis of osteoporosis in vivo based on the detection of chemical and microarchitecture (BMA) information in calcaneus bone. Introduction. Clinically available X-ray or US technologies for the diagnosis of osteoporosis do not report important parameters such as chemical information and BMA. With unique advantages, including good sensitivity to molecular and metabolic properties, PA bone assessment techniques hold a great potential for clinical translation. Methods. By performing multiwavelength PA measurements, the chemical information in the human calcaneus bone, including mineral, lipid, oxygenated-hemoglobin, and deoxygenated-hemoglobin, were assessed. In parallel, by performing PA spectrum analysis, the BMA as an important bone physical property was quantified. An unpaired [Formula: see text]-test and a two-way ANOVA test were conducted to compare the outcomes from the two subject groups. Results. Multiwavelength PA measurement is capable of assessing the relative contents of several chemical components in the trabecular bone in vivo, including both minerals and organic materials such as oxygenated-hemoglobin, deoxygenated-hemoglobin, and lipid, which are relevant to metabolic activities and bone health. In addition, PA measurements of BMA show good correlations ([Formula: see text] up to 0.65) with DEXA. Both the chemical and microarchitectural measurements from PA techniques can differentiate the two subject groups. Conclusion. The results from this initial clinical study suggest that PA techniques, by providing additional chemical and microarchitecture information relevant to bone health, may lead to accurate and early diagnosis, as well as sensitive monitoring of the treatment of osteoporosis. AAAS 2020-10-30 /pmc/articles/PMC10521673/ /pubmed/37849970 http://dx.doi.org/10.34133/2020/1081540 Text en Copyright © 2020 Ting Feng et al. https://creativecommons.org/licenses/by/4.0/Exclusive Licensee Suzhou Institute of Biomedical Engineering and Technology, CAS. Distributed under a Creative Commons Attribution License (CC BY 4.0). (https://creativecommons.org/licenses/by/4.0/) |
spellingShingle | Research Article Feng, Ting Zhu, Yunhao Morris, Richard Kozloff, Kenneth M. Wang, Xueding Functional Photoacoustic and Ultrasonic Assessment of Osteoporosis: A Clinical Feasibility Study |
title | Functional Photoacoustic and Ultrasonic Assessment of Osteoporosis: A Clinical Feasibility Study |
title_full | Functional Photoacoustic and Ultrasonic Assessment of Osteoporosis: A Clinical Feasibility Study |
title_fullStr | Functional Photoacoustic and Ultrasonic Assessment of Osteoporosis: A Clinical Feasibility Study |
title_full_unstemmed | Functional Photoacoustic and Ultrasonic Assessment of Osteoporosis: A Clinical Feasibility Study |
title_short | Functional Photoacoustic and Ultrasonic Assessment of Osteoporosis: A Clinical Feasibility Study |
title_sort | functional photoacoustic and ultrasonic assessment of osteoporosis: a clinical feasibility study |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521673/ https://www.ncbi.nlm.nih.gov/pubmed/37849970 http://dx.doi.org/10.34133/2020/1081540 |
work_keys_str_mv | AT fengting functionalphotoacousticandultrasonicassessmentofosteoporosisaclinicalfeasibilitystudy AT zhuyunhao functionalphotoacousticandultrasonicassessmentofosteoporosisaclinicalfeasibilitystudy AT morrisrichard functionalphotoacousticandultrasonicassessmentofosteoporosisaclinicalfeasibilitystudy AT kozloffkennethm functionalphotoacousticandultrasonicassessmentofosteoporosisaclinicalfeasibilitystudy AT wangxueding functionalphotoacousticandultrasonicassessmentofosteoporosisaclinicalfeasibilitystudy |