Cargando…
Multicontrast Pocket Colposcopy Cervical Cancer Diagnostic Algorithm for Referral Populations
Objective and Impact Statement. We use deep learning models to classify cervix images—collected with a low-cost, portable Pocket colposcope—with biopsy-confirmed high-grade precancer and cancer. We boost classification performance on a screened-positive population by using a class-balanced loss and...
Autores principales: | Skerrett, Erica, Miao, Zichen, Asiedu, Mercy N., Richards, Megan, Crouch, Brian, Sapiro, Guillermo, Qiu, Qiang, Ramanujam, Nirmala |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521679/ https://www.ncbi.nlm.nih.gov/pubmed/37850189 http://dx.doi.org/10.34133/2022/9823184 |
Ejemplares similares
-
Management and treatment of cervical intraepithelial neoplasia in the Netherlands after referral for colposcopy
por: Aitken, Clare A., et al.
Publicado: (2019) -
An integrated strategy for improving contrast, durability, and portability of a Pocket Colposcope for cervical cancer screening and diagnosis
por: Lam, Christopher T., et al.
Publicado: (2018) -
Description of Referrals for Colposcopy in a Hospital in Brazil
por: de Carvalho, Stephanie Hein, et al.
Publicado: (2020) -
Multicontrast 3D automated segmentation of cardiovascular images
por: Bramlet, Matthew, et al.
Publicado: (2016) -
A multicontrast MR atlas of the Wistar rat brain
por: Allan Johnson, G., et al.
Publicado: (2021)