Cargando…

Three-Dimensional Shear Wave Elastography Using a 2D Row Column Addressing (RCA) Array

Objective. To develop a 3D shear wave elastography (SWE) technique using a 2D row column addressing (RCA) array, with either external vibration or acoustic radiation force (ARF) as the shear wave source. Impact Statement. The proposed method paves the way for clinical translation of 3D SWE based on...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Zhijie, Kim, Jihun, Huang, Chengwu, Lowerison, Matthew R., Lok, U-Wai, Chen, Shigao, Song, Pengfei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521701/
https://www.ncbi.nlm.nih.gov/pubmed/37850186
http://dx.doi.org/10.34133/2022/9879632
_version_ 1785110188206850048
author Dong, Zhijie
Kim, Jihun
Huang, Chengwu
Lowerison, Matthew R.
Lok, U-Wai
Chen, Shigao
Song, Pengfei
author_facet Dong, Zhijie
Kim, Jihun
Huang, Chengwu
Lowerison, Matthew R.
Lok, U-Wai
Chen, Shigao
Song, Pengfei
author_sort Dong, Zhijie
collection PubMed
description Objective. To develop a 3D shear wave elastography (SWE) technique using a 2D row column addressing (RCA) array, with either external vibration or acoustic radiation force (ARF) as the shear wave source. Impact Statement. The proposed method paves the way for clinical translation of 3D SWE based on the 2D RCA, providing a low-cost and high volume rate solution that is compatible with existing clinical systems. Introduction. SWE is an established ultrasound imaging modality that provides a direct and quantitative assessment of tissue stiffness, which is significant for a wide range of clinical applications including cancer and liver fibrosis. SWE requires high frame rate imaging for robust shear wave tracking. Due to the technical challenges associated with high volume rate imaging in 3D, current SWE techniques are typically confined to 2D. Advancing SWE from 2D to 3D is significant because of the heterogeneous nature of tissue, which demands 3D imaging for accurate and comprehensive evaluation. Methods. A 3D SWE method using a RCA array was developed with a volume rate up to 2000 Hz. The performance of the proposed method was systematically evaluated on tissue-mimicking elasticity phantoms and in an in vivo case study. Results. 3D shear wave motion induced by either external vibration or ARF was successfully detected with the proposed method. Robust 3D shear wave speed maps were reconstructed for phantoms and in vivo. Conclusion. The high volume rate 3D imaging provided by the 2D RCA array provides a robust and practical solution for 3D SWE with a clear pathway for future clinical translation.
format Online
Article
Text
id pubmed-10521701
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher AAAS
record_format MEDLINE/PubMed
spelling pubmed-105217012023-10-17 Three-Dimensional Shear Wave Elastography Using a 2D Row Column Addressing (RCA) Array Dong, Zhijie Kim, Jihun Huang, Chengwu Lowerison, Matthew R. Lok, U-Wai Chen, Shigao Song, Pengfei BME Front Research Article Objective. To develop a 3D shear wave elastography (SWE) technique using a 2D row column addressing (RCA) array, with either external vibration or acoustic radiation force (ARF) as the shear wave source. Impact Statement. The proposed method paves the way for clinical translation of 3D SWE based on the 2D RCA, providing a low-cost and high volume rate solution that is compatible with existing clinical systems. Introduction. SWE is an established ultrasound imaging modality that provides a direct and quantitative assessment of tissue stiffness, which is significant for a wide range of clinical applications including cancer and liver fibrosis. SWE requires high frame rate imaging for robust shear wave tracking. Due to the technical challenges associated with high volume rate imaging in 3D, current SWE techniques are typically confined to 2D. Advancing SWE from 2D to 3D is significant because of the heterogeneous nature of tissue, which demands 3D imaging for accurate and comprehensive evaluation. Methods. A 3D SWE method using a RCA array was developed with a volume rate up to 2000 Hz. The performance of the proposed method was systematically evaluated on tissue-mimicking elasticity phantoms and in an in vivo case study. Results. 3D shear wave motion induced by either external vibration or ARF was successfully detected with the proposed method. Robust 3D shear wave speed maps were reconstructed for phantoms and in vivo. Conclusion. The high volume rate 3D imaging provided by the 2D RCA array provides a robust and practical solution for 3D SWE with a clear pathway for future clinical translation. AAAS 2022-07-04 /pmc/articles/PMC10521701/ /pubmed/37850186 http://dx.doi.org/10.34133/2022/9879632 Text en Copyright © 2022 Zhijie Dong et al. https://creativecommons.org/licenses/by/4.0/Exclusive Licensee Suzhou Institute of Biomedical Engineering and Technology, CAS. Distributed under a Creative Commons Attribution License (CC BY 4.0). (https://creativecommons.org/licenses/by/4.0/)
spellingShingle Research Article
Dong, Zhijie
Kim, Jihun
Huang, Chengwu
Lowerison, Matthew R.
Lok, U-Wai
Chen, Shigao
Song, Pengfei
Three-Dimensional Shear Wave Elastography Using a 2D Row Column Addressing (RCA) Array
title Three-Dimensional Shear Wave Elastography Using a 2D Row Column Addressing (RCA) Array
title_full Three-Dimensional Shear Wave Elastography Using a 2D Row Column Addressing (RCA) Array
title_fullStr Three-Dimensional Shear Wave Elastography Using a 2D Row Column Addressing (RCA) Array
title_full_unstemmed Three-Dimensional Shear Wave Elastography Using a 2D Row Column Addressing (RCA) Array
title_short Three-Dimensional Shear Wave Elastography Using a 2D Row Column Addressing (RCA) Array
title_sort three-dimensional shear wave elastography using a 2d row column addressing (rca) array
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521701/
https://www.ncbi.nlm.nih.gov/pubmed/37850186
http://dx.doi.org/10.34133/2022/9879632
work_keys_str_mv AT dongzhijie threedimensionalshearwaveelastographyusinga2drowcolumnaddressingrcaarray
AT kimjihun threedimensionalshearwaveelastographyusinga2drowcolumnaddressingrcaarray
AT huangchengwu threedimensionalshearwaveelastographyusinga2drowcolumnaddressingrcaarray
AT lowerisonmatthewr threedimensionalshearwaveelastographyusinga2drowcolumnaddressingrcaarray
AT lokuwai threedimensionalshearwaveelastographyusinga2drowcolumnaddressingrcaarray
AT chenshigao threedimensionalshearwaveelastographyusinga2drowcolumnaddressingrcaarray
AT songpengfei threedimensionalshearwaveelastographyusinga2drowcolumnaddressingrcaarray