Cargando…
Simulated MRI Artifacts: Testing Machine Learning Failure Modes
Objective. Seven types of MRI artifacts, including acquisition and preprocessing errors, were simulated to test a machine learning brain tumor segmentation model for potential failure modes. Introduction. Real-world medical deployments of machine learning algorithms are less common than the number o...
Autores principales: | Wang, Nicholas C., Noll, Douglas C., Srinivasan, Ashok, Gagnon-Bartsch, Johann, Kim, Michelle M., Rao, Arvind |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521705/ https://www.ncbi.nlm.nih.gov/pubmed/37850164 http://dx.doi.org/10.34133/2022/9807590 |
Ejemplares similares
-
Simulation and Mitigation of the Wrap-Around Artifact in the MRI Image
por: Hu, Runze, et al.
Publicado: (2021) -
Stress Testing Pathology Models with Generated Artifacts
por: Wang, Nicholas Chandler, et al.
Publicado: (2021) -
Does the metal artifact reduction algorithm activation mode influence the magnitude of artifacts in CBCT images?
por: Fontenele, Rocharles C., et al.
Publicado: (2020) -
Simulation of the ductile machining mode of silicon
por: Klippel, Hagen, et al.
Publicado: (2021) -
Automatic Artifact Detection Algorithm in Fetal MRI
por: Lim, Adam, et al.
Publicado: (2022)