Cargando…
Jointly Optimized Spatial Histogram UNET Architecture (JOSHUA) for Adipose Tissue Segmentation
Objective. We aim to develop a machine learning algorithm to quantify adipose tissue deposition at surgical sites as a function of biomaterial implantation. Impact Statement. To our knowledge, this study is the first investigation to apply convolutional neural network (CNN) models to identify and se...
Autores principales: | Peeples, Joshua K., Jameson, Julie F., Kotta, Nisha M., Grasman, Jonathan M., Stoppel, Whitney L., Zare, Alina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521712/ https://www.ncbi.nlm.nih.gov/pubmed/37850183 http://dx.doi.org/10.34133/2022/9854084 |
Ejemplares similares
-
Joshua
por: Handel, George Frideric, 1685-1759
Publicado: (1991) -
Cervical cell’s nucleus segmentation through an improved UNet architecture
por: Rasheed, Assad, et al.
Publicado: (2023) -
Joshua Redman
por: Redman, Joshua
Publicado: (1993) -
The Joshua tree
Publicado: (1987) -
Joshua Ferguson
Publicado: (1952)