Cargando…
Connectivity-based Cortical Parcellation via Contrastive Learning on Spatial-Graph Convolution
Objective. Objective of this work is the development and evaluation of a cortical parcellation framework based on tractography-derived brain structural connectivity. Impact Statement. The proposed framework utilizes novel spatial-graph representation learning methods for solving the task of cortical...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521716/ https://www.ncbi.nlm.nih.gov/pubmed/37850179 http://dx.doi.org/10.34133/2022/9814824 |
_version_ | 1785110191718531072 |
---|---|
author | You, Peiting Li, Xiang Zhang, Fan Li, Quanzheng |
author_facet | You, Peiting Li, Xiang Zhang, Fan Li, Quanzheng |
author_sort | You, Peiting |
collection | PubMed |
description | Objective. Objective of this work is the development and evaluation of a cortical parcellation framework based on tractography-derived brain structural connectivity. Impact Statement. The proposed framework utilizes novel spatial-graph representation learning methods for solving the task of cortical parcellation, an important medical image analysis and neuroscientific problem. Introduction. The concept of “connectional fingerprint” has motivated many investigations on the connectivity-based cortical parcellation, especially with the technical advancement of diffusion imaging. Previous studies on multiple brain regions have been conducted with promising results. However, performance and applicability of these models are limited by the relatively simple computational scheme and the lack of effective representation of brain imaging data. Methods. We propose the Spatial-graph Convolution Parcellation (SGCP) framework, a two-stage deep learning-based modeling for the graph representation brain imaging. In the first stage, SGCP learns an effective embedding of the input data through a self-supervised contrastive learning scheme with the backbone encoder of a spatial-graph convolution network. In the second stage, SGCP learns a supervised classifier to perform voxel-wise classification for parcellating the desired brain region. Results. SGCP is evaluated on the parcellation task for 5 brain regions in a 15-subject DWI dataset. Performance comparisons between SGCP, traditional parcellation methods, and other deep learning-based methods show that SGCP can achieve superior performance in all the cases. Conclusion. Consistent good performance of the proposed SGCP framework indicates its potential to be used as a general solution for investigating the regional/subregional composition of human brain based on one or more connectivity measurements. |
format | Online Article Text |
id | pubmed-10521716 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | AAAS |
record_format | MEDLINE/PubMed |
spelling | pubmed-105217162023-10-17 Connectivity-based Cortical Parcellation via Contrastive Learning on Spatial-Graph Convolution You, Peiting Li, Xiang Zhang, Fan Li, Quanzheng BME Front Research Article Objective. Objective of this work is the development and evaluation of a cortical parcellation framework based on tractography-derived brain structural connectivity. Impact Statement. The proposed framework utilizes novel spatial-graph representation learning methods for solving the task of cortical parcellation, an important medical image analysis and neuroscientific problem. Introduction. The concept of “connectional fingerprint” has motivated many investigations on the connectivity-based cortical parcellation, especially with the technical advancement of diffusion imaging. Previous studies on multiple brain regions have been conducted with promising results. However, performance and applicability of these models are limited by the relatively simple computational scheme and the lack of effective representation of brain imaging data. Methods. We propose the Spatial-graph Convolution Parcellation (SGCP) framework, a two-stage deep learning-based modeling for the graph representation brain imaging. In the first stage, SGCP learns an effective embedding of the input data through a self-supervised contrastive learning scheme with the backbone encoder of a spatial-graph convolution network. In the second stage, SGCP learns a supervised classifier to perform voxel-wise classification for parcellating the desired brain region. Results. SGCP is evaluated on the parcellation task for 5 brain regions in a 15-subject DWI dataset. Performance comparisons between SGCP, traditional parcellation methods, and other deep learning-based methods show that SGCP can achieve superior performance in all the cases. Conclusion. Consistent good performance of the proposed SGCP framework indicates its potential to be used as a general solution for investigating the regional/subregional composition of human brain based on one or more connectivity measurements. AAAS 2022-03-08 /pmc/articles/PMC10521716/ /pubmed/37850179 http://dx.doi.org/10.34133/2022/9814824 Text en Copyright © 2022 Peiting You et al. https://creativecommons.org/licenses/by/4.0/Exclusive Licensee Suzhou Institute of Biomedical Engineering and Technology, CAS. Distributed under a Creative Commons Attribution License (CC BY 4.0). (https://creativecommons.org/licenses/by/4.0/) |
spellingShingle | Research Article You, Peiting Li, Xiang Zhang, Fan Li, Quanzheng Connectivity-based Cortical Parcellation via Contrastive Learning on Spatial-Graph Convolution |
title | Connectivity-based Cortical Parcellation via Contrastive Learning on Spatial-Graph Convolution |
title_full | Connectivity-based Cortical Parcellation via Contrastive Learning on Spatial-Graph Convolution |
title_fullStr | Connectivity-based Cortical Parcellation via Contrastive Learning on Spatial-Graph Convolution |
title_full_unstemmed | Connectivity-based Cortical Parcellation via Contrastive Learning on Spatial-Graph Convolution |
title_short | Connectivity-based Cortical Parcellation via Contrastive Learning on Spatial-Graph Convolution |
title_sort | connectivity-based cortical parcellation via contrastive learning on spatial-graph convolution |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521716/ https://www.ncbi.nlm.nih.gov/pubmed/37850179 http://dx.doi.org/10.34133/2022/9814824 |
work_keys_str_mv | AT youpeiting connectivitybasedcorticalparcellationviacontrastivelearningonspatialgraphconvolution AT lixiang connectivitybasedcorticalparcellationviacontrastivelearningonspatialgraphconvolution AT zhangfan connectivitybasedcorticalparcellationviacontrastivelearningonspatialgraphconvolution AT liquanzheng connectivitybasedcorticalparcellationviacontrastivelearningonspatialgraphconvolution |