Cargando…
Connectivity-based Cortical Parcellation via Contrastive Learning on Spatial-Graph Convolution
Objective. Objective of this work is the development and evaluation of a cortical parcellation framework based on tractography-derived brain structural connectivity. Impact Statement. The proposed framework utilizes novel spatial-graph representation learning methods for solving the task of cortical...
Autores principales: | You, Peiting, Li, Xiang, Zhang, Fan, Li, Quanzheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521716/ https://www.ncbi.nlm.nih.gov/pubmed/37850179 http://dx.doi.org/10.34133/2022/9814824 |
Ejemplares similares
-
Learning Cortical Parcellations Using Graph Neural Networks
por: Eschenburg, Kristian M., et al.
Publicado: (2021) -
Parcellating connectivity in spatial maps
por: Baldassano, Christopher, et al.
Publicado: (2015) -
Parcellation of the primary cerebral cortices based on local connectivity profiles
por: Li, Qiaojun, et al.
Publicado: (2015) -
Unrevealing Reliable Cortical Parcellation of Individual Brains Using Resting-State Functional Magnetic Resonance Imaging and Masked Graph Convolutions
por: Qiu, Wenyuan, et al.
Publicado: (2022) -
Connectivity-Based Parcellation of the Cortical Mantle Using q-Ball Diffusion Imaging
por: Perrin, Muriel, et al.
Publicado: (2008)