Cargando…
Automatic Detection of Atrial Fibrillation from Single-Lead ECG Using Deep Learning of the Cardiac Cycle
Objective and Impact Statement. Atrial fibrillation (AF) is a serious medical condition that requires effective and timely treatment to prevent stroke. We explore deep neural networks (DNNs) for learning cardiac cycles and reliably detecting AF from single-lead electrocardiogram (ECG) signals. Intro...
Autores principales: | Dubatovka, Alina, Buhmann, Joachim M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521743/ https://www.ncbi.nlm.nih.gov/pubmed/37850161 http://dx.doi.org/10.34133/2022/9813062 |
Ejemplares similares
-
Short Single-Lead ECG Signal Delineation-Based Deep Learning: Implementation in Automatic Atrial Fibrillation Identification
por: Tutuko, Bambang, et al.
Publicado: (2022) -
Morphological Autoencoders for Beat-by-Beat Atrial Fibrillation Detection Using Single-Lead ECG
por: Silva, Rafael, et al.
Publicado: (2023) -
Screening for Atrial Fibrillation Using a Single Lead ECG Monitoring Device
por: Ko, Jum Suk, et al.
Publicado: (2021) -
Automatic Detection of Atrial Fibrillation in ECG Using Co-Occurrence Patterns of Dynamic Symbol Assignment and Machine Learning
por: Ganapathy, Nagarajan, et al.
Publicado: (2021) -
Machine Learning Using a Single-Lead ECG to Identify Patients With Atrial Fibrillation-Induced Heart Failure
por: Luongo, Giorgio, et al.
Publicado: (2022)