Cargando…

A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity

Antigen immunogenicity and the specificity of binding of T-cell receptors to antigens are key properties underlying effective immune responses. Here we propose diffRBM, an approach based on transfer learning and Restricted Boltzmann Machines, to build sequence-based predictive models of these proper...

Descripción completa

Detalles Bibliográficos
Autores principales: Bravi, Barbara, Di Gioacchino, Andrea, Fernandez-de-Cossio-Diaz, Jorge, Walczak, Aleksandra M, Mora, Thierry, Cocco, Simona, Monasson, Rémi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522340/
https://www.ncbi.nlm.nih.gov/pubmed/37681658
http://dx.doi.org/10.7554/eLife.85126
_version_ 1785110337771536384
author Bravi, Barbara
Di Gioacchino, Andrea
Fernandez-de-Cossio-Diaz, Jorge
Walczak, Aleksandra M
Mora, Thierry
Cocco, Simona
Monasson, Rémi
author_facet Bravi, Barbara
Di Gioacchino, Andrea
Fernandez-de-Cossio-Diaz, Jorge
Walczak, Aleksandra M
Mora, Thierry
Cocco, Simona
Monasson, Rémi
author_sort Bravi, Barbara
collection PubMed
description Antigen immunogenicity and the specificity of binding of T-cell receptors to antigens are key properties underlying effective immune responses. Here we propose diffRBM, an approach based on transfer learning and Restricted Boltzmann Machines, to build sequence-based predictive models of these properties. DiffRBM is designed to learn the distinctive patterns in amino-acid composition that, on the one hand, underlie the antigen’s probability of triggering a response, and on the other hand the T-cell receptor’s ability to bind to a given antigen. We show that the patterns learnt by diffRBM allow us to predict putative contact sites of the antigen-receptor complex. We also discriminate immunogenic and non-immunogenic antigens, antigen-specific and generic receptors, reaching performances that compare favorably to existing sequence-based predictors of antigen immunogenicity and T-cell receptor specificity.
format Online
Article
Text
id pubmed-10522340
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-105223402023-09-27 A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity Bravi, Barbara Di Gioacchino, Andrea Fernandez-de-Cossio-Diaz, Jorge Walczak, Aleksandra M Mora, Thierry Cocco, Simona Monasson, Rémi eLife Computational and Systems Biology Antigen immunogenicity and the specificity of binding of T-cell receptors to antigens are key properties underlying effective immune responses. Here we propose diffRBM, an approach based on transfer learning and Restricted Boltzmann Machines, to build sequence-based predictive models of these properties. DiffRBM is designed to learn the distinctive patterns in amino-acid composition that, on the one hand, underlie the antigen’s probability of triggering a response, and on the other hand the T-cell receptor’s ability to bind to a given antigen. We show that the patterns learnt by diffRBM allow us to predict putative contact sites of the antigen-receptor complex. We also discriminate immunogenic and non-immunogenic antigens, antigen-specific and generic receptors, reaching performances that compare favorably to existing sequence-based predictors of antigen immunogenicity and T-cell receptor specificity. eLife Sciences Publications, Ltd 2023-09-08 /pmc/articles/PMC10522340/ /pubmed/37681658 http://dx.doi.org/10.7554/eLife.85126 Text en © 2023, Bravi et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Computational and Systems Biology
Bravi, Barbara
Di Gioacchino, Andrea
Fernandez-de-Cossio-Diaz, Jorge
Walczak, Aleksandra M
Mora, Thierry
Cocco, Simona
Monasson, Rémi
A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity
title A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity
title_full A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity
title_fullStr A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity
title_full_unstemmed A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity
title_short A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity
title_sort transfer-learning approach to predict antigen immunogenicity and t-cell receptor specificity
topic Computational and Systems Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522340/
https://www.ncbi.nlm.nih.gov/pubmed/37681658
http://dx.doi.org/10.7554/eLife.85126
work_keys_str_mv AT bravibarbara atransferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity
AT digioacchinoandrea atransferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity
AT fernandezdecossiodiazjorge atransferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity
AT walczakaleksandram atransferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity
AT morathierry atransferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity
AT coccosimona atransferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity
AT monassonremi atransferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity
AT bravibarbara transferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity
AT digioacchinoandrea transferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity
AT fernandezdecossiodiazjorge transferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity
AT walczakaleksandram transferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity
AT morathierry transferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity
AT coccosimona transferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity
AT monassonremi transferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity