Cargando…
A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity
Antigen immunogenicity and the specificity of binding of T-cell receptors to antigens are key properties underlying effective immune responses. Here we propose diffRBM, an approach based on transfer learning and Restricted Boltzmann Machines, to build sequence-based predictive models of these proper...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522340/ https://www.ncbi.nlm.nih.gov/pubmed/37681658 http://dx.doi.org/10.7554/eLife.85126 |
_version_ | 1785110337771536384 |
---|---|
author | Bravi, Barbara Di Gioacchino, Andrea Fernandez-de-Cossio-Diaz, Jorge Walczak, Aleksandra M Mora, Thierry Cocco, Simona Monasson, Rémi |
author_facet | Bravi, Barbara Di Gioacchino, Andrea Fernandez-de-Cossio-Diaz, Jorge Walczak, Aleksandra M Mora, Thierry Cocco, Simona Monasson, Rémi |
author_sort | Bravi, Barbara |
collection | PubMed |
description | Antigen immunogenicity and the specificity of binding of T-cell receptors to antigens are key properties underlying effective immune responses. Here we propose diffRBM, an approach based on transfer learning and Restricted Boltzmann Machines, to build sequence-based predictive models of these properties. DiffRBM is designed to learn the distinctive patterns in amino-acid composition that, on the one hand, underlie the antigen’s probability of triggering a response, and on the other hand the T-cell receptor’s ability to bind to a given antigen. We show that the patterns learnt by diffRBM allow us to predict putative contact sites of the antigen-receptor complex. We also discriminate immunogenic and non-immunogenic antigens, antigen-specific and generic receptors, reaching performances that compare favorably to existing sequence-based predictors of antigen immunogenicity and T-cell receptor specificity. |
format | Online Article Text |
id | pubmed-10522340 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-105223402023-09-27 A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity Bravi, Barbara Di Gioacchino, Andrea Fernandez-de-Cossio-Diaz, Jorge Walczak, Aleksandra M Mora, Thierry Cocco, Simona Monasson, Rémi eLife Computational and Systems Biology Antigen immunogenicity and the specificity of binding of T-cell receptors to antigens are key properties underlying effective immune responses. Here we propose diffRBM, an approach based on transfer learning and Restricted Boltzmann Machines, to build sequence-based predictive models of these properties. DiffRBM is designed to learn the distinctive patterns in amino-acid composition that, on the one hand, underlie the antigen’s probability of triggering a response, and on the other hand the T-cell receptor’s ability to bind to a given antigen. We show that the patterns learnt by diffRBM allow us to predict putative contact sites of the antigen-receptor complex. We also discriminate immunogenic and non-immunogenic antigens, antigen-specific and generic receptors, reaching performances that compare favorably to existing sequence-based predictors of antigen immunogenicity and T-cell receptor specificity. eLife Sciences Publications, Ltd 2023-09-08 /pmc/articles/PMC10522340/ /pubmed/37681658 http://dx.doi.org/10.7554/eLife.85126 Text en © 2023, Bravi et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Computational and Systems Biology Bravi, Barbara Di Gioacchino, Andrea Fernandez-de-Cossio-Diaz, Jorge Walczak, Aleksandra M Mora, Thierry Cocco, Simona Monasson, Rémi A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity |
title | A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity |
title_full | A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity |
title_fullStr | A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity |
title_full_unstemmed | A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity |
title_short | A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity |
title_sort | transfer-learning approach to predict antigen immunogenicity and t-cell receptor specificity |
topic | Computational and Systems Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522340/ https://www.ncbi.nlm.nih.gov/pubmed/37681658 http://dx.doi.org/10.7554/eLife.85126 |
work_keys_str_mv | AT bravibarbara atransferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity AT digioacchinoandrea atransferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity AT fernandezdecossiodiazjorge atransferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity AT walczakaleksandram atransferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity AT morathierry atransferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity AT coccosimona atransferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity AT monassonremi atransferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity AT bravibarbara transferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity AT digioacchinoandrea transferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity AT fernandezdecossiodiazjorge transferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity AT walczakaleksandram transferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity AT morathierry transferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity AT coccosimona transferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity AT monassonremi transferlearningapproachtopredictantigenimmunogenicityandtcellreceptorspecificity |