Cargando…
A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity
Antigen immunogenicity and the specificity of binding of T-cell receptors to antigens are key properties underlying effective immune responses. Here we propose diffRBM, an approach based on transfer learning and Restricted Boltzmann Machines, to build sequence-based predictive models of these proper...
Autores principales: | Bravi, Barbara, Di Gioacchino, Andrea, Fernandez-de-Cossio-Diaz, Jorge, Walczak, Aleksandra M, Mora, Thierry, Cocco, Simona, Monasson, Rémi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522340/ https://www.ncbi.nlm.nih.gov/pubmed/37681658 http://dx.doi.org/10.7554/eLife.85126 |
Ejemplares similares
-
RBM-MHC: A Semi-Supervised Machine-Learning Method for Sample-Specific Prediction of Antigen Presentation by HLA-I Alleles
por: Bravi, Barbara, et al.
Publicado: (2021) -
Learning protein constitutive motifs from sequence data
por: Tubiana, Jérôme, et al.
Publicado: (2019) -
Probing T-cell response by sequence-based probabilistic modeling
por: Bravi, Barbara, et al.
Publicado: (2021) -
Method for identification of condition-associated public antigen receptor sequences
por: Pogorelyy, Mikhail V, et al.
Publicado: (2018) -
Adaptation of olfactory receptor abundances for efficient coding
por: Teşileanu, Tiberiu, et al.
Publicado: (2019)