Cargando…

MWCNTs dispersion adopting GA and its application towards copper tailings-based cementitious materials

Hydrophobic carbon nanotubes are hardly to disperse in water and prone to agglomerate when poured with Copper Tailing-Based Cementitious Material (CTCM). Multi-walled carbon nanotubes (MWCNTs) + Arabic Gum (GA) dispersions were prepared by a novel method of synergistic optimization of concentration,...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiang, Bingzhi, Cheng, Ruifeng, Zhu, Jielu, Zhou, Yong, Peng, Xiaoying, Song, Junwei, Wu, Junhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522576/
https://www.ncbi.nlm.nih.gov/pubmed/37752145
http://dx.doi.org/10.1038/s41598-023-43133-7
Descripción
Sumario:Hydrophobic carbon nanotubes are hardly to disperse in water and prone to agglomerate when poured with Copper Tailing-Based Cementitious Material (CTCM). Multi-walled carbon nanotubes (MWCNTs) + Arabic Gum (GA) dispersions were prepared by a novel method of synergistic optimization of concentration, controlling low-frequency ultrasonic time and setting the ambient temperature with non-toxic anionic surfactant GA as surfactant. The results of UV–Vis spectroscopy showed that the high stability MWCNTs + GA dispersion with low aggregation area (< 1.2%) and low aggregation beam size (< 219 nm) have been prepared by using 1.7 mmol/l GA. The effects of highly stable MWCNTs dispersion on the mechanical properties, microstructure and durability of CTCM were studied. The 28 days compressive strength increased by 21.5%, and the flexural strength increased by 20.5%, almost reaching the mechanical level of the control group. The results of SEM, XRD and EDS showed that GA significantly enhanced the dispersion of MWCNT in aqueous solution at a suitable concentration (mass ratio of GA:CNTs = 1:1). The microstructure of the prepared CTCM by high stability MWCNTs dispersion was optimized obviously, and the mechanical properties and durability were improved significantly. This method solves the dual problem of MWCNTs not being fully dispersed in aqueous solution and being easily re-agglomerated in cementitious materials, as well as finding a breakthrough for the low cost and industrialization of tailings cement-based composite cementitious materials.