Cargando…
Colorectal cancer risk stratification on histological slides based on survival curves predicted by deep learning
Studies have shown that colorectal cancer prognosis can be predicted by deep learning-based analysis of histological tissue sections of the primary tumor. So far, this has been achieved using a binary prediction. Survival curves might contain more detailed information and thus enable a more fine-gra...
Autores principales: | Höhn, Julia, Krieghoff-Henning, Eva, Wies, Christoph, Kiehl, Lennard, Hetz, Martin J., Bucher, Tabea-Clara, Jonnagaddala, Jitendra, Zatloukal, Kurt, Müller, Heimo, Plass, Markus, Jungwirth, Emilian, Gaiser, Timo, Steeg, Matthias, Holland-Letz, Tim, Brenner, Hermann, Hoffmeister, Michael, Brinker, Titus J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522577/ https://www.ncbi.nlm.nih.gov/pubmed/37752266 http://dx.doi.org/10.1038/s41698-023-00451-3 |
Ejemplares similares
-
Digital Natives’ Preferences on Mobile Artificial Intelligence Apps for Skin Cancer Diagnostics: Survey Study
por: Haggenmüller, Sarah, et al.
Publicado: (2021) -
Privacy risks of whole-slide image sharing in digital pathology
por: Holub, Petr, et al.
Publicado: (2023) -
Artificial Intelligence in Skin Cancer Diagnostics: The Patients' Perspective
por: Jutzi, Tanja B., et al.
Publicado: (2020) -
Deep learning can predict survival directly from histology in clear cell renal cell carcinoma
por: Wessels, Frederik, et al.
Publicado: (2022) -
A self-supervised vision transformer to predict survival from histopathology in renal cell carcinoma
por: Wessels, Frederik, et al.
Publicado: (2023)