Cargando…
Environment and taxonomy shape the genomic signature of prokaryotic extremophiles
This study provides comprehensive quantitative evidence suggesting that adaptations to extreme temperatures and pH imprint a discernible environmental component in the genomic signature of microbial extremophiles. Both supervised and unsupervised machine learning algorithms were used to analyze geno...
Autores principales: | Arias, Pablo Millán, Butler, Joseph, Randhawa, Gurjit S., Soltysiak, Maximillian P. M., Hill, Kathleen A., Kari, Lila |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522608/ https://www.ncbi.nlm.nih.gov/pubmed/37752120 http://dx.doi.org/10.1038/s41598-023-42518-y |
Ejemplares similares
-
Machine learning using intrinsic genomic signatures for rapid classification of novel pathogens: COVID-19 case study
por: Randhawa, Gurjit S., et al.
Publicado: (2020) -
ML-DSP: Machine Learning with Digital Signal Processing for ultrafast, accurate, and scalable genome classification at all taxonomic levels
por: Randhawa, Gurjit S., et al.
Publicado: (2019) -
Extremophilic Prokaryotic Endoxylanases: Diversity, Applicability, and Molecular Insights
por: Verma, Digvijay
Publicado: (2021) -
Extremophiles and Extreme Environments
por: Rampelotto, Pabulo Henrique
Publicado: (2013) -
iDeLUCS: a deep learning interactive tool for alignment-free clustering of DNA sequences
por: Millan Arias, Pablo, et al.
Publicado: (2023)