Cargando…
Principal component analysis–artificial neural network-based model for predicting the static strength of seasonally frozen soils
Seasonally frozen soils are exposed to freeze‒thaw cycles every year, leading to mechanical property deterioration. To reasonably describe the deterioration of soil under different conditions, machine learning (ML) technology is used to establish a prediction model for soil static strength. Six key...
Autores principales: | Sun, Yiqiang, Zhou, Shijie, Meng, Shangjiu, Wang, Miao, Mu, Hailong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522631/ https://www.ncbi.nlm.nih.gov/pubmed/37752230 http://dx.doi.org/10.1038/s41598-023-43462-7 |
Ejemplares similares
-
Principal component neural networks : theory and applications
por: Diamantaras, Konstantinos I.
Publicado: (1996) -
Principal Component Regression and Artificial Neural Network: The Prediction of Air Pollution Index (API)
por: Hua, Ang Kean, et al.
Publicado: (2021) -
Artificial Neural Networks Combined with the Principal Component Analysis for Non-Fluent Speech Recognition
por: Świetlicka, Izabela, et al.
Publicado: (2022) -
Experimental study on soil-water characteristics and strength characteristics of complete-intense weathering mudstone in seasonal frozen area
por: Guo, Haotian, et al.
Publicado: (2023) -
Principal component analysis of coronaviruses reveals their diversity and seasonal and pandemic potential
por: Konishi, Tomokazu
Publicado: (2020)