Cargando…
Meta-learning for transformer-based prediction of potent compounds
For many machine learning applications in drug discovery, only limited amounts of training data are available. This typically applies to compound design and activity prediction and often restricts machine learning, especially deep learning. For low-data applications, specialized learning strategies...
Autores principales: | Chen, Hengwei, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522638/ https://www.ncbi.nlm.nih.gov/pubmed/37752164 http://dx.doi.org/10.1038/s41598-023-43046-5 |
Ejemplares similares
-
Designing highly potent compounds using a chemical language model
por: Chen, Hengwei, et al.
Publicado: (2023) -
Predicting Potent Compounds Using a Conditional Variational Autoencoder Based upon a New Structure–Potency Fingerprint
por: Janela, Tiago, et al.
Publicado: (2023) -
Explaining Accurate Predictions of Multitarget Compounds with Machine Learning Models Derived for Individual Targets
por: Lamens, Alec, et al.
Publicado: (2023) -
Explainable machine learning predictions of dual-target compounds reveal characteristic structural features
por: Feldmann, Christian, et al.
Publicado: (2021) -
Prediction of Compound Profiling Matrices Using Machine Learning
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2018)