Cargando…
Potential of Predatory Bacteria to Colonize the Duckweed Microbiome and Change Its Structure: A Model Study Using the Obligate Predatory Bacterium, Bacteriovorax sp. HI3
Modifying the duckweed microbiome is a major challenge for enhancing the effectiveness of duckweed-based wastewater treatment and biomass production technologies. We herein examined the potential of the exogenous introduction of predatory bacteria to change the duckweed microbiome. Bacteriovorax sp....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522839/ https://www.ncbi.nlm.nih.gov/pubmed/37690850 http://dx.doi.org/10.1264/jsme2.ME23040 |
Sumario: | Modifying the duckweed microbiome is a major challenge for enhancing the effectiveness of duckweed-based wastewater treatment and biomass production technologies. We herein examined the potential of the exogenous introduction of predatory bacteria to change the duckweed microbiome. Bacteriovorax sp. HI3, a model predatory bacterium, colonized the core of the Lemna microbiome, and its predatory behavior changed the microbiome structure, which correlated with colonization density. These results reveal that bacterial predatory interactions may be important drivers that shape the duckweed microbiome, suggesting their potential usefulness in modifying the microbiome. |
---|