Cargando…
Community Structure and Predicted Functions of Actively Growing Bacteria Responsive to Released Coral Mucus in Surrounding Seawater
A direct relationship exists between diverse corals and fish farming in Keten Bay, Amami-Oshima, Japan. The release of coral mucus has a significant impact on the microbial activity of surrounding seawater. To obtain a more detailed understanding of biogeochemical cycles in this environment, the eff...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522842/ https://www.ncbi.nlm.nih.gov/pubmed/37704450 http://dx.doi.org/10.1264/jsme2.ME23024 |
Sumario: | A direct relationship exists between diverse corals and fish farming in Keten Bay, Amami-Oshima, Japan. The release of coral mucus has a significant impact on the microbial activity of surrounding seawater. To obtain a more detailed understanding of biogeochemical cycles in this environment, the effects of coral mucus on the community structure and function of bacteria in surrounding seawater need to be elucidated. We herein used a bromodeoxyuridine approach to investigate the structures and functions of bacterial communities growing close to mucus derived from two different Acropora corals, AC1 and AC2. The alpha diversities of actively growing bacteria (AGB) were lower in mucus-containing seawater than in control seawater and their community structures significantly differed, suggesting that the growth of specific bacteria was modulated by coral mucus. Rhodobacteraceae and Cryomorphaceae species were the most dominant AGB in response to the mucus of Acropora AC1 and AC2, respectively. In contrast, the growth of Actinomarinaceae, Alteromonadaceae, Flavobacteriaceae, and SAR86 clade bacteria was inhibited by coral mucus. The results of a Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) analysis suggested that the predicted functions of AGB in mucus-containing seawater differed from those in seawater. These functions were related to the biosynthesis and degradation of the constituents of coral mucus, such as polysaccharides, sugar acids, and aromatic compounds. The present study demonstrated that complex bacterial community structures and functions may be shaped by coral mucus, suggesting that corals foster diverse bacterial communities that enhance the ecological resilience of this fish farming area. |
---|