Cargando…

Multipurpose deep learning-powered UAV for forest fire prevention and emergency response

This paper presents a customized UAV designed for rescue and safety purposes in the forest sector. The UAV features a durable F450 frame quadcopter with four 1000KV brushless motors and a KK2.1 Flight Control Board for stability and manoeuvrability with a runtime of 90 min. It incorporates a Raspber...

Descripción completa

Detalles Bibliográficos
Autores principales: Rathod, Tejas, Patil, Vinay, Harikrishnan, R., Shahane, Priti
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10523003/
https://www.ncbi.nlm.nih.gov/pubmed/37771320
http://dx.doi.org/10.1016/j.ohx.2023.e00479
Descripción
Sumario:This paper presents a customized UAV designed for rescue and safety purposes in the forest sector. The UAV features a durable F450 frame quadcopter with four 1000KV brushless motors and a KK2.1 Flight Control Board for stability and manoeuvrability with a runtime of 90 min. It incorporates a Raspberry Pi camera for real-time video streaming, enabling efficient identification of individuals in need of assistance. The GSM module allows contactless communication, ensuring streamlined and safe interaction. A motor controls the lid of the customizable first aid kit box, facilitating efficient aid delivery. The Neo-6 M GPS module provides accurate localization of the drone and individuals in distress with a horizontal position accuracy of 2.5 m. The UAV collects temperature and humidity data using the DHT 11 sensor having +/- 2 degreesC and +- 5% accuracy respectively. This sensor employs advanced deep learning models, including artificial neural networks (ANN) and generative adversarial networks (GANs), for real-time forest fire prediction with an accuracy of 90.7 % The integration of GANs enhances accuracy through synthetic data generation. Moreover, all these components are interfaced using a Raspberry Pi4 and a GUI, providing a smooth user control experience and end-to-end information for quick and effective emergency response.