Cargando…
Predicting the 5-Year Risk of Nonalcoholic Fatty Liver Disease Using Machine Learning Models: Prospective Cohort Study
BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) has emerged as a worldwide public health issue. Identifying and targeting populations at a heightened risk of developing NAFLD over a 5-year period can help reduce and delay adverse hepatic prognostic events. OBJECTIVE: This study aimed to investi...
Autores principales: | Huang, Guoqing, Jin, Qiankai, Mao, Yushan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10523217/ https://www.ncbi.nlm.nih.gov/pubmed/37698911 http://dx.doi.org/10.2196/46891 |
Ejemplares similares
-
Development and validation of a carotid atherosclerosis risk prediction model based on a Chinese population
por: Huang, Guoqing, et al.
Publicado: (2022) -
Machine learning classifiers for screening nonalcoholic fatty liver disease in general adults
por: Qin, Shenghua, et al.
Publicado: (2023) -
High free triiodothyronine, and free-triiodothyronine-to-free-thyroxine ratio are associated with metabolic syndrome in a euthyroid employee population: the Zhejiang Zhenhai study
por: Jin, Qiankai, et al.
Publicado: (2023) -
Nonalcoholic fatty liver disease and early prediction of gestational diabetes mellitus using machine learning methods
por: Lee, Seung Mi, et al.
Publicado: (2022) -
A longitudinal epidemiological study on the triglyceride and glucose index and the incident nonalcoholic fatty liver disease
por: Zheng, Rongjiong, et al.
Publicado: (2018)