Cargando…

ZIF-8 Pellets as a Robust Material for Hydrogen Cryo-Adsorption Tanks

[Image: see text] Cryoadsorption on the inner surface of porous materials is a promising solution for safe, fast, and reversible hydrogen storage. Within the class of highly porous metal–organic frameworks, zeolitic imidazolate frameworks (ZIFs) show high thermal, chemical, and mechanical stability....

Descripción completa

Detalles Bibliográficos
Autores principales: Balderas-Xicohtencatl, Rafael, Villajos, Jose A., Casabán, Jose, Wong, Dennis, Maiwald, Michael, Hirscher, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10523355/
https://www.ncbi.nlm.nih.gov/pubmed/37771502
http://dx.doi.org/10.1021/acsaem.2c03719
Descripción
Sumario:[Image: see text] Cryoadsorption on the inner surface of porous materials is a promising solution for safe, fast, and reversible hydrogen storage. Within the class of highly porous metal–organic frameworks, zeolitic imidazolate frameworks (ZIFs) show high thermal, chemical, and mechanical stability. In this study, we selected ZIF-8 synthesized mechanochemically by twin-screw extrusion as powder and pellets. The hydrogen storage capacity at 77 K and up to 100 bar has been analyzed in two laboratories applying three different measurement setups showing a high reproducibility. Pelletizing ZIF-8 increases the packing density close to the corresponding value for a single crystal without loss of porosity, resulting in an improved volumetric hydrogen storage capacity close to the upper limit for a single crystal. The high volumetric uptake combined with a low and constant heat of adsorption provides ca. 31 g of usable hydrogen per liter of pellet assuming a temperature–pressure swing adsorption process between 77 K – 100 bar and 117 K – 5 bar. Cycling experiments do not indicate any degradation in storage capacity. The excellent stability during preparation, handling, and operation of ZIF-8 pellets demonstrates its potential as a robust adsorbent material for technical application in pilot- and full-scale adsorption vessel prototypes.