Cargando…
Machine Learning-Boosted Docking Enables the Efficient Structure-Based Virtual Screening of Giga-Scale Enumerated Chemical Libraries
[Image: see text] The emergence of ultra-large screening libraries, filled to the brim with billions of readily available compounds, poses a growing challenge for docking-based virtual screening. Machine learning (ML)-boosted strategies like the tool HASTEN combine rapid ML prediction with the brute...
Autores principales: | Sivula, Toni, Yetukuri, Laxman, Kalliokoski, Tuomo, Käsnänen, Heikki, Poso, Antti, Pöhner, Ina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10523430/ https://www.ncbi.nlm.nih.gov/pubmed/37655823 http://dx.doi.org/10.1021/acs.jcim.3c01239 |
Ejemplares similares
-
Virus structure and structure-based antivirals
por: Plavec, Zlatka, et al.
Publicado: (2021) -
Template-based combinatorial enumeration of virtual compound libraries for lipids
por: Sud, Manish, et al.
Publicado: (2012) -
Binding Affinity via Docking: Fact and Fiction
por: Pantsar, Tatu, et al.
Publicado: (2018) -
Docking-Based 3D-QSAR Studies for 1,3,4-oxadiazol-2-one Derivatives as FAAH Inhibitors
por: Zięba, Agata, et al.
Publicado: (2021) -
Chemoinformatics-based enumeration of chemical libraries: a tutorial
por: Saldívar-González, Fernanda I., et al.
Publicado: (2020)