Cargando…
Automated calibration of somatosensory stimulation using reinforcement learning
BACKGROUND: The identification of the electrical stimulation parameters for neuromodulation is a subject-specific and time-consuming procedure that presently mostly relies on the expertise of the user (e.g., clinician, experimenter, bioengineer). Since the parameters of stimulation change over time...
Autores principales: | Borda, Luigi, Gozzi, Noemi, Preatoni, Greta, Valle, Giacomo, Raspopovic, Stanisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10523674/ https://www.ncbi.nlm.nih.gov/pubmed/37752607 http://dx.doi.org/10.1186/s12984-023-01246-0 |
Ejemplares similares
-
Multisensory stimulation decreases phantom limb distortions and is optimally integrated
por: Risso, Gaia, et al.
Publicado: (2022) -
Cognitive benefits of using non-invasive compared to implantable neural feedback
por: Chee, Lauren, et al.
Publicado: (2022) -
Reshaping the full body illusion through visuo-electro-tactile sensations
por: Preatoni, Greta, et al.
Publicado: (2023) -
Brain-Computer Interface to Deliver Individualized Multisensory Intervention for Neuropathic Pain
por: Aurucci, Giuseppe Valerio, et al.
Publicado: (2023) -
Design of an adaptable intrafascicular electrode (AIR) for selective nerve stimulation by model-based optimization
por: Ciotti, Federico, et al.
Publicado: (2023)