Cargando…
Personalising monitoring for chemotherapy patients through predicting deterioration in renal and hepatic function
BACKGROUND: In those receiving chemotherapy, renal and hepatic dysfunction can increase the risk of toxicity and should therefore be monitored. We aimed to develop a machine learning model to identify those patients that need closer monitoring, enabling a safer and more efficient service. METHODS: W...
Autores principales: | Chambers, Pinkie, Watson, Matthew, Bridgewater, John, Forster, Martin D., Roylance, Rebecca, Burgoyne, Rebecca, Masento, Sebastian, Steventon, Luke, Harmsworth King, James, Duncan, Nick, al Moubayed, Noura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10524043/ https://www.ncbi.nlm.nih.gov/pubmed/37610318 http://dx.doi.org/10.1002/cam4.6418 |
Ejemplares similares
-
Predicting acute clinical deterioration with interpretable machine learning to support emergency care decision making
por: Boulitsakis Logothetis, Stelios, et al.
Publicado: (2023) -
Evidence to guide the optimal timing for pre‐chemotherapy blood tests for early breast, colorectal cancer and diffuse large B‐cell lymphoma
por: Chambers, Pinkie, et al.
Publicado: (2021) -
Re: Molecular testing to deliver personalised chemotherapy recommendations
por: Gibbs, Peter, et al.
Publicado: (2023) -
Using model explanations to guide deep learning models towards consistent explanations for EHR data
por: Watson, Matthew, et al.
Publicado: (2022) -
Author Correction: Using model explanations to guide deep learning models towards consistent explanations for EHR data
por: Watson, Matthew, et al.
Publicado: (2023)