Cargando…

Variations in the Intestinal Microbiota of the Chinese Soft-Shelled Turtle (Trionyx sinensis) between Greenhouse and Pond Aquaculture

SIMPLE SUMMARY: An intuitive understanding of microbial diversity and abundances of Chinese soft-shelled turtle aquaculture is crucial to comprehending these ecosystems. Herein, the evolutionary characteristics of the bacterial communities in the Chinese soft-shelled turtle and its aquaculture water...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Naicheng, Zhang, Peng, Xue, Mingyang, Xiao, Zidong, Zhang, Mengjie, Meng, Yan, Fan, Yuding, Qiu, Junqiang, Zhang, Qinghua, Zhou, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525211/
https://www.ncbi.nlm.nih.gov/pubmed/37760371
http://dx.doi.org/10.3390/ani13182971
Descripción
Sumario:SIMPLE SUMMARY: An intuitive understanding of microbial diversity and abundances of Chinese soft-shelled turtle aquaculture is crucial to comprehending these ecosystems. Herein, the evolutionary characteristics of the bacterial communities in the Chinese soft-shelled turtle and its aquaculture water systems were investigated using Illumina MiSeq sequencing. The sequencing results revealed significant differences in the microflora compositions at the phylum and genus levels in both the intestine and aquaculture water of SSTs in greenhouse and pond culture environments. The results showed that the bacterial diversity and richness compositions in the intestinal tract and aquaculture water were the same. However, the relative abundances of bacterial communities varied. The results of this study are of great significance in understanding how the environment affects SST cultures. These data may provide valuable instructions for Chinese soft-shelled turtle aquaculture management. ABSTRACT: The microbial community structure in aquaculture water plays an important role in the intestinal microbial diversity of aquatic animals. The Chinese soft-shelled turtle (SST) (Trionyx sinensis) is an important aquaculture species of high economic value in the Asia-Pacific region. An intuitive understanding of the microbial diversity and abundances of SST aquaculture is crucial for comprehending these ecosystems. Herein, the evolutionary characteristics of the bacterial communities in the SST and its aquaculture water systems were investigated using Illumina MiSeq sequencing. This experiment sampled nine SSTs from a pond outside a greenhouse and was repeated three times. The sequencing results revealed significant differences in the microflora composition at the phylum and genus levels in both the intestine and aquaculture water of the SSTs in the greenhouse and pond aquaculture environments. A total of 1039 genera belonging to 65 phyla were identified. At the phylum level, the relative abundances of Chloroflexi (24%), Acidobacteria (5%), and Nitrospira (3%) were higher in the greenhouse water than in the pond water. The relative abundances of Bacteroidetes (35%), Actinobacteria (8%), and Cyanobacteria (4%) were higher in the pond water than in the greenhouse water. The intestinal microorganisms in the SSTs experienced significant changes after the SSTs were transferred from a greenhouse culture to a pond culture environment for 28 days. After the SSTs were cultured in the ponds, we observed decreases in the relative abundances of Actinobacteria (39% to 25%), Cyanobacteria (24% to 0.8%), Chlorobacteria (9% to 3%), and Firmicutes (5.5% to 0.8%. However, we observed increases in the relative abundances of Bacteroidetes (2% to 35%) and Acidobacteria (0.3% to 25%). These results showed that the bacterial diversity and richness compositions in the intestinal tract and aquaculture water were the same. However, the relative abundances of bacterial communities varied. The results of this study are of great significance in understanding how the environment affects SST cultures. These data may provide valuable instructions for Chinese soft-shelled turtle aquaculture management.