Cargando…
GNN-surv: Discrete-Time Survival Prediction Using Graph Neural Networks
Survival prediction models play a key role in patient prognosis and personalized treatment. However, their accuracy can be improved by incorporating patient similarity networks, which uncover complex data patterns. Our study uses Graph Neural Networks (GNNs) to enhance discrete-time survival predict...
Autor principal: | Kim, So Yeon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525217/ https://www.ncbi.nlm.nih.gov/pubmed/37760148 http://dx.doi.org/10.3390/bioengineering10091046 |
Ejemplares similares
-
Barriers for the performance of graph neural networks (GNN) in discrete random structures
por: Gamarnik, David
Publicado: (2023) -
Graph Neural Network(GNN) Inference of FPGA
por: Fuad, Kazi Ahmed Asif
Publicado: (2019) -
Auto-GNN: Neural architecture search of graph neural networks
por: Zhou, Kaixiong, et al.
Publicado: (2022) -
SS-GNN: A Simple-Structured Graph Neural Network for
Affinity Prediction
por: Zhang, Shuke, et al.
Publicado: (2023) -
IV-GNN : interval valued data handling using graph neural network
por: Dawn, Sucheta, et al.
Publicado: (2022)