Cargando…
ALBSNN: ultra-low latency adaptive local binary spiking neural network with accuracy loss estimator
Spiking neural network (SNN) is a brain-inspired model with more spatio-temporal information processing capacity and computational energy efficiency. However, with the increasing depth of SNNs, the memory problem caused by the weights of SNNs has gradually attracted attention. In this study, we prop...
Autores principales: | Pei, Yijian, Xu, Changqing, Wu, Zili, Liu, Yi, Yang, Yintang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525310/ https://www.ncbi.nlm.nih.gov/pubmed/37771337 http://dx.doi.org/10.3389/fnins.2023.1225871 |
Ejemplares similares
-
Exploring the Connection Between Binary and Spiking Neural Networks
por: Lu, Sen, et al.
Publicado: (2020) -
Constrain Bias Addition to Train Low-Latency Spiking Neural Networks
por: Lin, Ranxi, et al.
Publicado: (2023) -
First spike latency sensitivity of spiking neuron models
por: Trotta, Laura, et al.
Publicado: (2013) -
Ultra-low-power switching circuits based on a binary pattern generator with spiking neurons
por: Yajima, Takeaki
Publicado: (2022) -
Mapping Neural Networks to FPGA-Based IoT Devices for Ultra-Low Latency Processing
por: Wielgosz, Maciej, et al.
Publicado: (2019)