Cargando…

Combining Celiac and Hepatic Vagus Nerve Neuromodulation Reverses Glucose Intolerance and Improves Glycemic Control in Pre- and Overt-Type 2 Diabetes Mellitus

Neurological disorders and type 2 diabetes mellitus (T2DM) are deeply intertwined. For example, autonomic neuropathy contributes to the development of T2DM and continued unmanaged T2DM causes further progression of nerve damage. Increasing glycemic control has been shown to prevent the onset and pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Waataja, Jonathan J., Asp, Anders J., Billington, Charles J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525327/
https://www.ncbi.nlm.nih.gov/pubmed/37760895
http://dx.doi.org/10.3390/biomedicines11092452
_version_ 1785110758038700032
author Waataja, Jonathan J.
Asp, Anders J.
Billington, Charles J.
author_facet Waataja, Jonathan J.
Asp, Anders J.
Billington, Charles J.
author_sort Waataja, Jonathan J.
collection PubMed
description Neurological disorders and type 2 diabetes mellitus (T2DM) are deeply intertwined. For example, autonomic neuropathy contributes to the development of T2DM and continued unmanaged T2DM causes further progression of nerve damage. Increasing glycemic control has been shown to prevent the onset and progression of diabetic autonomic neuropathies. Neuromodulation consisting of combined stimulation of celiac vagal fibers innervating the pancreas with concurrent electrical blockade of neuronal hepatic vagal fibers innervating the liver has been shown to increase glycemic control in animal models of T2DM. The present study demonstrated that the neuromodulation reversed glucose intolerance in alloxan-treated swine in both pre- and overt stages of T2DM. This was demonstrated by improved performance on oral glucose tolerance tests (OGTTs), as assessed by area under the curve (AUC). In prediabetic swine (fasting plasma glucose (FPG) range: 101–119 mg/dL) the median AUC decreased from 31.9 AUs (IQR = 28.6, 35.5) to 15.9 AUs (IQR = 15.1, 18.3) p = 0.004. In diabetic swine (FPG range: 133–207 mg/dL) the median AUC decreased from 54.2 AUs (IQR = 41.5, 56.6) to 16.0 AUs (IQR = 15.4, 21.5) p = 0.003. This neuromodulation technique may offer a new treatment for T2DM and reverse glycemic dysregulation at multiple states of T2DM involved in diabetic neuropathy including at its development and during progression.
format Online
Article
Text
id pubmed-10525327
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105253272023-09-28 Combining Celiac and Hepatic Vagus Nerve Neuromodulation Reverses Glucose Intolerance and Improves Glycemic Control in Pre- and Overt-Type 2 Diabetes Mellitus Waataja, Jonathan J. Asp, Anders J. Billington, Charles J. Biomedicines Article Neurological disorders and type 2 diabetes mellitus (T2DM) are deeply intertwined. For example, autonomic neuropathy contributes to the development of T2DM and continued unmanaged T2DM causes further progression of nerve damage. Increasing glycemic control has been shown to prevent the onset and progression of diabetic autonomic neuropathies. Neuromodulation consisting of combined stimulation of celiac vagal fibers innervating the pancreas with concurrent electrical blockade of neuronal hepatic vagal fibers innervating the liver has been shown to increase glycemic control in animal models of T2DM. The present study demonstrated that the neuromodulation reversed glucose intolerance in alloxan-treated swine in both pre- and overt stages of T2DM. This was demonstrated by improved performance on oral glucose tolerance tests (OGTTs), as assessed by area under the curve (AUC). In prediabetic swine (fasting plasma glucose (FPG) range: 101–119 mg/dL) the median AUC decreased from 31.9 AUs (IQR = 28.6, 35.5) to 15.9 AUs (IQR = 15.1, 18.3) p = 0.004. In diabetic swine (FPG range: 133–207 mg/dL) the median AUC decreased from 54.2 AUs (IQR = 41.5, 56.6) to 16.0 AUs (IQR = 15.4, 21.5) p = 0.003. This neuromodulation technique may offer a new treatment for T2DM and reverse glycemic dysregulation at multiple states of T2DM involved in diabetic neuropathy including at its development and during progression. MDPI 2023-09-04 /pmc/articles/PMC10525327/ /pubmed/37760895 http://dx.doi.org/10.3390/biomedicines11092452 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Waataja, Jonathan J.
Asp, Anders J.
Billington, Charles J.
Combining Celiac and Hepatic Vagus Nerve Neuromodulation Reverses Glucose Intolerance and Improves Glycemic Control in Pre- and Overt-Type 2 Diabetes Mellitus
title Combining Celiac and Hepatic Vagus Nerve Neuromodulation Reverses Glucose Intolerance and Improves Glycemic Control in Pre- and Overt-Type 2 Diabetes Mellitus
title_full Combining Celiac and Hepatic Vagus Nerve Neuromodulation Reverses Glucose Intolerance and Improves Glycemic Control in Pre- and Overt-Type 2 Diabetes Mellitus
title_fullStr Combining Celiac and Hepatic Vagus Nerve Neuromodulation Reverses Glucose Intolerance and Improves Glycemic Control in Pre- and Overt-Type 2 Diabetes Mellitus
title_full_unstemmed Combining Celiac and Hepatic Vagus Nerve Neuromodulation Reverses Glucose Intolerance and Improves Glycemic Control in Pre- and Overt-Type 2 Diabetes Mellitus
title_short Combining Celiac and Hepatic Vagus Nerve Neuromodulation Reverses Glucose Intolerance and Improves Glycemic Control in Pre- and Overt-Type 2 Diabetes Mellitus
title_sort combining celiac and hepatic vagus nerve neuromodulation reverses glucose intolerance and improves glycemic control in pre- and overt-type 2 diabetes mellitus
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525327/
https://www.ncbi.nlm.nih.gov/pubmed/37760895
http://dx.doi.org/10.3390/biomedicines11092452
work_keys_str_mv AT waatajajonathanj combiningceliacandhepaticvagusnerveneuromodulationreversesglucoseintoleranceandimprovesglycemiccontrolinpreandoverttype2diabetesmellitus
AT aspandersj combiningceliacandhepaticvagusnerveneuromodulationreversesglucoseintoleranceandimprovesglycemiccontrolinpreandoverttype2diabetesmellitus
AT billingtoncharlesj combiningceliacandhepaticvagusnerveneuromodulationreversesglucoseintoleranceandimprovesglycemiccontrolinpreandoverttype2diabetesmellitus