Cargando…
Improved Network and Training Scheme for Cross-Trial Surface Electromyography (sEMG)-Based Gesture Recognition
To enhance the performance of surface electromyography (sEMG)-based gesture recognition, we propose a novel network-agnostic two-stage training scheme, called sEMGPoseMIM, that produces trial-invariant representations to be aligned with corresponding hand movements via cross-modal knowledge distilla...
Autores principales: | Dai, Qingfeng, Wong, Yongkang, Kankanhali, Mohan, Li, Xiangdong, Geng, Weidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525369/ https://www.ncbi.nlm.nih.gov/pubmed/37760203 http://dx.doi.org/10.3390/bioengineering10091101 |
Ejemplares similares
-
A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition
por: Hu, Yu, et al.
Publicado: (2018) -
Dataset for multi-channel surface electromyography (sEMG) signals of hand gestures
por: Ozdemir, Mehmet Akif, et al.
Publicado: (2022) -
putEMG—A Surface Electromyography Hand Gesture Recognition Dataset
por: Kaczmarek, Piotr, et al.
Publicado: (2019) -
Gesture recognition by instantaneous surface EMG images
por: Geng, Weidong, et al.
Publicado: (2016) -
Multi-Category Gesture Recognition Modeling Based on sEMG and IMU Signals
por: Jiang, Yujian, et al.
Publicado: (2022)