Cargando…
Emotion Recognition Using Hierarchical Spatiotemporal Electroencephalogram Information from Local to Global Brain Regions
To understand human emotional states, local activities in various regions of the cerebral cortex and the interactions among different brain regions must be considered. This paper proposes a hierarchical emotional context feature learning model that improves multichannel electroencephalography (EEG)-...
Autores principales: | Jeong, Dong-Ki, Kim, Hyoung-Gook, Kim, Jin-Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525488/ https://www.ncbi.nlm.nih.gov/pubmed/37760143 http://dx.doi.org/10.3390/bioengineering10091040 |
Ejemplares similares
-
Hierarchical Spatiotemporal Electroencephalogram Feature Learning and Emotion Recognition With Attention-Based Antagonism Neural Network
por: Zhang, Pengwei, et al.
Publicado: (2021) -
Enhancing Emotion Recognition Using Region-Specific Electroencephalogram Data and Dynamic Functional Connectivity
por: Liu, Jun, et al.
Publicado: (2022) -
Spatiotemporal Dynamics of Dexmedetomidine-Induced Electroencephalogram Oscillations
por: Akeju, Oluwaseun, et al.
Publicado: (2016) -
Electroencephalogram Access for Emotion Recognition Based on a Deep Hybrid Network
por: Zhong, Qinghua, et al.
Publicado: (2020) -
The multiscale 3D convolutional network for emotion recognition based on electroencephalogram
por: Su, Yun, et al.
Publicado: (2022)