Cargando…
Analysis of Clinical Phenotypes through Machine Learning of First-Line H. pylori Treatment in Europe during the Period 2013–2022: Data from the European Registry on H. pylori Management (Hp-EuReg)
The segmentation of patients into homogeneous groups could help to improve eradication therapy effectiveness. Our aim was to determine the most important treatment strategies used in Europe, to evaluate first-line treatment effectiveness according to year and country. Data collection: All first-line...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525558/ https://www.ncbi.nlm.nih.gov/pubmed/37760723 http://dx.doi.org/10.3390/antibiotics12091427 |
_version_ | 1785110813072162816 |
---|---|
author | Nyssen, Olga P. Pratesi, Pietro Spínola, Miguel A. Jonaitis, Laimas Pérez-Aísa, Ángeles Vaira, Dino Saracino, Ilaria Maria Pavoni, Matteo Fiorini, Giulia Tepes, Bojan Bordin, Dmitry S. Voynovan, Irina Lanas, Ángel Martínez-Domínguez, Samuel J. Alfaro, Enrique Bujanda, Luis Pabón-Carrasco, Manuel Hernández, Luis Gasbarrini, Antonio Kupcinskas, Juozas Lerang, Frode Smith, Sinead M. Gridnyev, Oleksiy Leja, Mārcis Rokkas, Theodore Marcos-Pinto, Ricardo Meštrović, Antonio Marlicz, Wojciech Milivojevic, Vladimir Simsek, Halis Kunovsky, Lumir Papp, Veronika Phull, Perminder S. Venerito, Marino Boyanova, Lyudmila Boltin, Doron Niv, Yaron Matysiak-Budnik, Tamara Doulberis, Michael Dobru, Daniela Lamy, Vincent Capelle, Lisette G. Nikolovska Trpchevska, Emilija Moreira, Leticia Cano-Català, Anna Parra, Pablo Mégraud, Francis O’Morain, Colm Ortega, Guillermo J. Gisbert, Javier P. |
author_facet | Nyssen, Olga P. Pratesi, Pietro Spínola, Miguel A. Jonaitis, Laimas Pérez-Aísa, Ángeles Vaira, Dino Saracino, Ilaria Maria Pavoni, Matteo Fiorini, Giulia Tepes, Bojan Bordin, Dmitry S. Voynovan, Irina Lanas, Ángel Martínez-Domínguez, Samuel J. Alfaro, Enrique Bujanda, Luis Pabón-Carrasco, Manuel Hernández, Luis Gasbarrini, Antonio Kupcinskas, Juozas Lerang, Frode Smith, Sinead M. Gridnyev, Oleksiy Leja, Mārcis Rokkas, Theodore Marcos-Pinto, Ricardo Meštrović, Antonio Marlicz, Wojciech Milivojevic, Vladimir Simsek, Halis Kunovsky, Lumir Papp, Veronika Phull, Perminder S. Venerito, Marino Boyanova, Lyudmila Boltin, Doron Niv, Yaron Matysiak-Budnik, Tamara Doulberis, Michael Dobru, Daniela Lamy, Vincent Capelle, Lisette G. Nikolovska Trpchevska, Emilija Moreira, Leticia Cano-Català, Anna Parra, Pablo Mégraud, Francis O’Morain, Colm Ortega, Guillermo J. Gisbert, Javier P. |
author_sort | Nyssen, Olga P. |
collection | PubMed |
description | The segmentation of patients into homogeneous groups could help to improve eradication therapy effectiveness. Our aim was to determine the most important treatment strategies used in Europe, to evaluate first-line treatment effectiveness according to year and country. Data collection: All first-line empirical treatments registered at AEGREDCap in the European Registry on Helicobacter pylori management (Hp-EuReg) from June 2013 to November 2022. A Boruta method determined the “most important” variables related to treatment effectiveness. Data clustering was performed through multi-correspondence analysis of the resulting six most important variables for every year in the 2013–2022 period. Based on 35,852 patients, the average overall treatment effectiveness increased from 87% in 2013 to 93% in 2022. The lowest effectiveness (80%) was obtained in 2016 in cluster #3 encompassing Slovenia, Lithuania, Latvia, and Russia, treated with 7-day triple therapy with amoxicillin–clarithromycin (92% of cases). The highest effectiveness (95%) was achieved in 2022, mostly in Spain (81%), with the bismuth–quadruple therapy, including the single-capsule (64%) and the concomitant treatment with clarithromycin–amoxicillin–metronidazole/tinidazole (34%) with 10 (69%) and 14 (32%) days. Cluster analysis allowed for the identification of patients in homogeneous treatment groups assessing the effectiveness of different first-line treatments depending on therapy scheme, adherence, country, and prescription year. |
format | Online Article Text |
id | pubmed-10525558 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105255582023-09-28 Analysis of Clinical Phenotypes through Machine Learning of First-Line H. pylori Treatment in Europe during the Period 2013–2022: Data from the European Registry on H. pylori Management (Hp-EuReg) Nyssen, Olga P. Pratesi, Pietro Spínola, Miguel A. Jonaitis, Laimas Pérez-Aísa, Ángeles Vaira, Dino Saracino, Ilaria Maria Pavoni, Matteo Fiorini, Giulia Tepes, Bojan Bordin, Dmitry S. Voynovan, Irina Lanas, Ángel Martínez-Domínguez, Samuel J. Alfaro, Enrique Bujanda, Luis Pabón-Carrasco, Manuel Hernández, Luis Gasbarrini, Antonio Kupcinskas, Juozas Lerang, Frode Smith, Sinead M. Gridnyev, Oleksiy Leja, Mārcis Rokkas, Theodore Marcos-Pinto, Ricardo Meštrović, Antonio Marlicz, Wojciech Milivojevic, Vladimir Simsek, Halis Kunovsky, Lumir Papp, Veronika Phull, Perminder S. Venerito, Marino Boyanova, Lyudmila Boltin, Doron Niv, Yaron Matysiak-Budnik, Tamara Doulberis, Michael Dobru, Daniela Lamy, Vincent Capelle, Lisette G. Nikolovska Trpchevska, Emilija Moreira, Leticia Cano-Català, Anna Parra, Pablo Mégraud, Francis O’Morain, Colm Ortega, Guillermo J. Gisbert, Javier P. Antibiotics (Basel) Article The segmentation of patients into homogeneous groups could help to improve eradication therapy effectiveness. Our aim was to determine the most important treatment strategies used in Europe, to evaluate first-line treatment effectiveness according to year and country. Data collection: All first-line empirical treatments registered at AEGREDCap in the European Registry on Helicobacter pylori management (Hp-EuReg) from June 2013 to November 2022. A Boruta method determined the “most important” variables related to treatment effectiveness. Data clustering was performed through multi-correspondence analysis of the resulting six most important variables for every year in the 2013–2022 period. Based on 35,852 patients, the average overall treatment effectiveness increased from 87% in 2013 to 93% in 2022. The lowest effectiveness (80%) was obtained in 2016 in cluster #3 encompassing Slovenia, Lithuania, Latvia, and Russia, treated with 7-day triple therapy with amoxicillin–clarithromycin (92% of cases). The highest effectiveness (95%) was achieved in 2022, mostly in Spain (81%), with the bismuth–quadruple therapy, including the single-capsule (64%) and the concomitant treatment with clarithromycin–amoxicillin–metronidazole/tinidazole (34%) with 10 (69%) and 14 (32%) days. Cluster analysis allowed for the identification of patients in homogeneous treatment groups assessing the effectiveness of different first-line treatments depending on therapy scheme, adherence, country, and prescription year. MDPI 2023-09-10 /pmc/articles/PMC10525558/ /pubmed/37760723 http://dx.doi.org/10.3390/antibiotics12091427 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nyssen, Olga P. Pratesi, Pietro Spínola, Miguel A. Jonaitis, Laimas Pérez-Aísa, Ángeles Vaira, Dino Saracino, Ilaria Maria Pavoni, Matteo Fiorini, Giulia Tepes, Bojan Bordin, Dmitry S. Voynovan, Irina Lanas, Ángel Martínez-Domínguez, Samuel J. Alfaro, Enrique Bujanda, Luis Pabón-Carrasco, Manuel Hernández, Luis Gasbarrini, Antonio Kupcinskas, Juozas Lerang, Frode Smith, Sinead M. Gridnyev, Oleksiy Leja, Mārcis Rokkas, Theodore Marcos-Pinto, Ricardo Meštrović, Antonio Marlicz, Wojciech Milivojevic, Vladimir Simsek, Halis Kunovsky, Lumir Papp, Veronika Phull, Perminder S. Venerito, Marino Boyanova, Lyudmila Boltin, Doron Niv, Yaron Matysiak-Budnik, Tamara Doulberis, Michael Dobru, Daniela Lamy, Vincent Capelle, Lisette G. Nikolovska Trpchevska, Emilija Moreira, Leticia Cano-Català, Anna Parra, Pablo Mégraud, Francis O’Morain, Colm Ortega, Guillermo J. Gisbert, Javier P. Analysis of Clinical Phenotypes through Machine Learning of First-Line H. pylori Treatment in Europe during the Period 2013–2022: Data from the European Registry on H. pylori Management (Hp-EuReg) |
title | Analysis of Clinical Phenotypes through Machine Learning of First-Line H. pylori Treatment in Europe during the Period 2013–2022: Data from the European Registry on H. pylori Management (Hp-EuReg) |
title_full | Analysis of Clinical Phenotypes through Machine Learning of First-Line H. pylori Treatment in Europe during the Period 2013–2022: Data from the European Registry on H. pylori Management (Hp-EuReg) |
title_fullStr | Analysis of Clinical Phenotypes through Machine Learning of First-Line H. pylori Treatment in Europe during the Period 2013–2022: Data from the European Registry on H. pylori Management (Hp-EuReg) |
title_full_unstemmed | Analysis of Clinical Phenotypes through Machine Learning of First-Line H. pylori Treatment in Europe during the Period 2013–2022: Data from the European Registry on H. pylori Management (Hp-EuReg) |
title_short | Analysis of Clinical Phenotypes through Machine Learning of First-Line H. pylori Treatment in Europe during the Period 2013–2022: Data from the European Registry on H. pylori Management (Hp-EuReg) |
title_sort | analysis of clinical phenotypes through machine learning of first-line h. pylori treatment in europe during the period 2013–2022: data from the european registry on h. pylori management (hp-eureg) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525558/ https://www.ncbi.nlm.nih.gov/pubmed/37760723 http://dx.doi.org/10.3390/antibiotics12091427 |
work_keys_str_mv | AT nyssenolgap analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT pratesipietro analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT spinolamiguela analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT jonaitislaimas analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT perezaisaangeles analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT vairadino analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT saracinoilariamaria analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT pavonimatteo analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT fiorinigiulia analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT tepesbojan analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT bordindmitrys analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT voynovanirina analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT lanasangel analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT martinezdominguezsamuelj analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT alfaroenrique analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT bujandaluis analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT paboncarrascomanuel analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT hernandezluis analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT gasbarriniantonio analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT kupcinskasjuozas analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT lerangfrode analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT smithsineadm analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT gridnyevoleksiy analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT lejamarcis analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT rokkastheodore analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT marcospintoricardo analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT mestrovicantonio analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT marliczwojciech analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT milivojevicvladimir analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT simsekhalis analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT kunovskylumir analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT pappveronika analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT phullperminders analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT veneritomarino analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT boyanovalyudmila analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT boltindoron analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT nivyaron analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT matysiakbudniktamara analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT doulberismichael analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT dobrudaniela analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT lamyvincent analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT capellelisetteg analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT nikolovskatrpchevskaemilija analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT moreiraleticia analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT canocatalaanna analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT parrapablo analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT megraudfrancis analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT omoraincolm analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT ortegaguillermoj analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT gisbertjavierp analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg AT analysisofclinicalphenotypesthroughmachinelearningoffirstlinehpyloritreatmentineuropeduringtheperiod20132022datafromtheeuropeanregistryonhpylorimanagementhpeureg |