Cargando…
Biomechanical Effects of Different Sitting Postures and Physiologic Movements on the Lumbar Spine: A Finite Element Study
This study used the finite element method(FEM) to investigate how pressure on the lumbar spine changes during dynamic movements in different postures: standing, erect sitting on a chair, slumped sitting on a chair, and sitting on the floor. Three load modes (flexion, lateral bending, and axial rotat...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525568/ https://www.ncbi.nlm.nih.gov/pubmed/37760153 http://dx.doi.org/10.3390/bioengineering10091051 |
_version_ | 1785110815466061824 |
---|---|
author | Cho, Mingoo Han, Jun-Sang Kang, Sungwook Ahn, Chang-Hwan Kim, Dong-Hee Kim, Chul-Hyun Kim, Kyoung-Tae Kim, Ae-Ryoung Hwang, Jong-Moon |
author_facet | Cho, Mingoo Han, Jun-Sang Kang, Sungwook Ahn, Chang-Hwan Kim, Dong-Hee Kim, Chul-Hyun Kim, Kyoung-Tae Kim, Ae-Ryoung Hwang, Jong-Moon |
author_sort | Cho, Mingoo |
collection | PubMed |
description | This study used the finite element method(FEM) to investigate how pressure on the lumbar spine changes during dynamic movements in different postures: standing, erect sitting on a chair, slumped sitting on a chair, and sitting on the floor. Three load modes (flexion, lateral bending, and axial rotation) were applied to the FEM, simulating movements of the lumbar spine. Results showed no significant difference in pressure distribution on the annulus fiber and nucleus pulposus, representing intradiscal pressure, as well as on the cortical bone during movements between standing and erect sitting postures. However, both slumped sitting on a chair and sitting on the floor postures significantly increased pressure on the nucleus pulposus, annulus fibrosus, and cortical bone in all three movements when compared to standing or erect sitting on a chair. Notably, sitting on the floor resulted in even higher pressure on the nucleus pulposus and annulus fibers compared to slumped sitting on a chair. The decreased lumbar lordosis while sitting on the floor led to the highest increase in pressure on the annulus fiber and nucleus pulposus in the lumbar spine. In conclusion, maintaining an erect sitting position with increased lumbar lordosis during seated activities can effectively reduce intradiscal pressure and cortical bone stress associated with degenerative disc diseases and spinal deformities. |
format | Online Article Text |
id | pubmed-10525568 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105255682023-09-28 Biomechanical Effects of Different Sitting Postures and Physiologic Movements on the Lumbar Spine: A Finite Element Study Cho, Mingoo Han, Jun-Sang Kang, Sungwook Ahn, Chang-Hwan Kim, Dong-Hee Kim, Chul-Hyun Kim, Kyoung-Tae Kim, Ae-Ryoung Hwang, Jong-Moon Bioengineering (Basel) Article This study used the finite element method(FEM) to investigate how pressure on the lumbar spine changes during dynamic movements in different postures: standing, erect sitting on a chair, slumped sitting on a chair, and sitting on the floor. Three load modes (flexion, lateral bending, and axial rotation) were applied to the FEM, simulating movements of the lumbar spine. Results showed no significant difference in pressure distribution on the annulus fiber and nucleus pulposus, representing intradiscal pressure, as well as on the cortical bone during movements between standing and erect sitting postures. However, both slumped sitting on a chair and sitting on the floor postures significantly increased pressure on the nucleus pulposus, annulus fibrosus, and cortical bone in all three movements when compared to standing or erect sitting on a chair. Notably, sitting on the floor resulted in even higher pressure on the nucleus pulposus and annulus fibers compared to slumped sitting on a chair. The decreased lumbar lordosis while sitting on the floor led to the highest increase in pressure on the annulus fiber and nucleus pulposus in the lumbar spine. In conclusion, maintaining an erect sitting position with increased lumbar lordosis during seated activities can effectively reduce intradiscal pressure and cortical bone stress associated with degenerative disc diseases and spinal deformities. MDPI 2023-09-07 /pmc/articles/PMC10525568/ /pubmed/37760153 http://dx.doi.org/10.3390/bioengineering10091051 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cho, Mingoo Han, Jun-Sang Kang, Sungwook Ahn, Chang-Hwan Kim, Dong-Hee Kim, Chul-Hyun Kim, Kyoung-Tae Kim, Ae-Ryoung Hwang, Jong-Moon Biomechanical Effects of Different Sitting Postures and Physiologic Movements on the Lumbar Spine: A Finite Element Study |
title | Biomechanical Effects of Different Sitting Postures and Physiologic Movements on the Lumbar Spine: A Finite Element Study |
title_full | Biomechanical Effects of Different Sitting Postures and Physiologic Movements on the Lumbar Spine: A Finite Element Study |
title_fullStr | Biomechanical Effects of Different Sitting Postures and Physiologic Movements on the Lumbar Spine: A Finite Element Study |
title_full_unstemmed | Biomechanical Effects of Different Sitting Postures and Physiologic Movements on the Lumbar Spine: A Finite Element Study |
title_short | Biomechanical Effects of Different Sitting Postures and Physiologic Movements on the Lumbar Spine: A Finite Element Study |
title_sort | biomechanical effects of different sitting postures and physiologic movements on the lumbar spine: a finite element study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525568/ https://www.ncbi.nlm.nih.gov/pubmed/37760153 http://dx.doi.org/10.3390/bioengineering10091051 |
work_keys_str_mv | AT chomingoo biomechanicaleffectsofdifferentsittingposturesandphysiologicmovementsonthelumbarspineafiniteelementstudy AT hanjunsang biomechanicaleffectsofdifferentsittingposturesandphysiologicmovementsonthelumbarspineafiniteelementstudy AT kangsungwook biomechanicaleffectsofdifferentsittingposturesandphysiologicmovementsonthelumbarspineafiniteelementstudy AT ahnchanghwan biomechanicaleffectsofdifferentsittingposturesandphysiologicmovementsonthelumbarspineafiniteelementstudy AT kimdonghee biomechanicaleffectsofdifferentsittingposturesandphysiologicmovementsonthelumbarspineafiniteelementstudy AT kimchulhyun biomechanicaleffectsofdifferentsittingposturesandphysiologicmovementsonthelumbarspineafiniteelementstudy AT kimkyoungtae biomechanicaleffectsofdifferentsittingposturesandphysiologicmovementsonthelumbarspineafiniteelementstudy AT kimaeryoung biomechanicaleffectsofdifferentsittingposturesandphysiologicmovementsonthelumbarspineafiniteelementstudy AT hwangjongmoon biomechanicaleffectsofdifferentsittingposturesandphysiologicmovementsonthelumbarspineafiniteelementstudy |