Cargando…
The Performance of a Deep Learning-Based Automatic Measurement Model for Measuring the Cardiothoracic Ratio on Chest Radiographs
Objective: Prior studies on models based on deep learning (DL) and measuring the cardiothoracic ratio (CTR) on chest radiographs have lacked rigorous agreement analyses with radiologists or reader tests. We validated the performance of a commercially available DL-based CTR measurement model with var...
Autores principales: | Kim, Donguk, Lee, Jong Hyuk, Jang, Myoung-jin, Park, Jongsoo, Hong, Wonju, Lee, Chan Su, Yang, Si Yeong, Park, Chang Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525628/ https://www.ncbi.nlm.nih.gov/pubmed/37760179 http://dx.doi.org/10.3390/bioengineering10091077 |
Ejemplares similares
-
Deep learning-based cardiothoracic ratio measurement on chest radiograph: accuracy improvement without self-annotation
por: Yoshida, Kotaro, et al.
Publicado: (2023) -
CardioNet: Automatic Semantic Segmentation to Calculate the Cardiothoracic Ratio for Cardiomegaly and Other Chest Diseases
por: Jafar, Abbas, et al.
Publicado: (2022) -
Development and Validation of a Deep Learning–based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs
por: Hwang, Eui Jin, et al.
Publicado: (2019) -
Calculation of the Cardiothoracic Ratio from Portable Anteroposterior Chest Radiography
por: Chon, Sung Bin, et al.
Publicado: (2011) -
Limitations of cardiothoracic ratio derived from chest radiographs to predict real heart size: comparison with magnetic resonance imaging
por: Simkus, Paulius, et al.
Publicado: (2021)