Cargando…
MWG-UNet: Hybrid Deep Learning Framework for Lung Fields and Heart Segmentation in Chest X-ray Images
Deep learning technology has achieved breakthrough research results in the fields of medical computer vision and image processing. Generative adversarial networks (GANs) have demonstrated a capacity for image generation and expression ability. This paper proposes a new method called MWG-UNet (multip...
Autores principales: | Lyu, Yu, Tian, Xiaolin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525798/ https://www.ncbi.nlm.nih.gov/pubmed/37760193 http://dx.doi.org/10.3390/bioengineering10091091 |
Ejemplares similares
-
RGSB-UNet: Hybrid Deep Learning Framework for Tumour Segmentation in Digital Pathology Images
por: Zhao, Tengfei, et al.
Publicado: (2023) -
COVID TV-Unet: Segmenting COVID-19 chest CT images using connectivity imposed Unet
por: Saeedizadeh, Narges, et al.
Publicado: (2021) -
New hybrid segmentation algorithm: UNet-GOA
por: Yousefi, Tohid, et al.
Publicado: (2023) -
A New Semantic Segmentation Framework Based on UNet
por: Fu, Leiyang, et al.
Publicado: (2023) -
nn-TransUNet: An Automatic Deep Learning Pipeline for Heart MRI Segmentation
por: Zhao, Li, et al.
Publicado: (2022)