Cargando…
sEMG Spectral Analysis and Machine Learning Algorithms Are Able to Discriminate Biomechanical Risk Classes Associated with Manual Material Liftings
Manual material handling and load lifting are activities that can cause work-related musculoskeletal disorders. For this reason, the National Institute for Occupational Safety and Health proposed an equation depending on the following parameters: intensity, duration, frequency, and geometric charact...
Autores principales: | Donisi, Leandro, Jacob, Deborah, Guerrini, Lorena, Prisco, Giuseppe, Esposito, Fabrizio, Cesarelli, Mario, Amato, Francesco, Gargiulo, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525808/ https://www.ncbi.nlm.nih.gov/pubmed/37760205 http://dx.doi.org/10.3390/bioengineering10091103 |
Ejemplares similares
-
A Logistic Regression Model for Biomechanical Risk Classification in Lifting Tasks
por: Donisi, Leandro, et al.
Publicado: (2022) -
sEMG dataset of routine activities
por: Khan, Asad Mansoor, et al.
Publicado: (2020) -
Quantification of high and low sEMG spectral components during sustained isometric contraction
por: Costa‐García, Álvaro, et al.
Publicado: (2022) -
Surface Electromyography Meets Biomechanics: Correct Interpretation of sEMG-Signals in Neuro-Rehabilitation Needs Biomechanical Input
por: Disselhorst-Klug, Catherine, et al.
Publicado: (2020) -
The Influence of the sEMG Amplitude Estimation Technique on the EMG–Force Relationship
por: Ranaldi, Simone, et al.
Publicado: (2022)