Cargando…
Electroencephalogram-Based Subject Matching Learning (ESML): A Deep Learning Framework on Electroencephalogram-Based Biometrics and Task Identification
An EEG signal (Electroencephalogram) is a bioelectric phenomenon reflecting human brain activities. In this paper, we propose a novel deep learning framework ESML (EEG-based Subject Matching Learning) using raw EEG signals to learn latent representations for EEG-based user identification and tack cl...
Autores principales: | Xu, Jin, Zhou, Erqiang, Qin, Zhen, Bi, Ting, Qin, Zhiguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525823/ https://www.ncbi.nlm.nih.gov/pubmed/37754043 http://dx.doi.org/10.3390/bs13090765 |
Ejemplares similares
-
Challenges and Future Perspectives on Electroencephalogram-Based Biometrics in Person Recognition
por: Chan, Hui-Ling, et al.
Publicado: (2018) -
Brain Age Prediction/Classification through Recurrent Deep Learning with Electroencephalogram Recordings of Seizure Subjects
por: Jusseaume, Kameron, et al.
Publicado: (2022) -
Assessing attentional task-related electroencephalogram signal variations by using mobile electroencephalogram technology: An experimental study
por: Matsuo, Moemi, et al.
Publicado: (2023) -
Heartfulness Meditation Alters Electroencephalogram Oscillations: An Electroencephalogram Study
por: Krishna, Dwivedi, et al.
Publicado: (2022) -
The electroencephalogram in syncope
por: Komagamine, Junpei
Publicado: (2018)