Cargando…
SK-03-92 Drug Kills Intracellular Mycobacterium tuberculosis
Background: Tuberculosis affects millions of people worldwide. The emergence of drug-resistant Mycobacterium tuberculosis strains has made treatment more difficult. A drug discovery project initiated to screen natural products identified a lead stilbene compound, and structure function analysis of h...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525840/ https://www.ncbi.nlm.nih.gov/pubmed/37760682 http://dx.doi.org/10.3390/antibiotics12091385 |
Sumario: | Background: Tuberculosis affects millions of people worldwide. The emergence of drug-resistant Mycobacterium tuberculosis strains has made treatment more difficult. A drug discovery project initiated to screen natural products identified a lead stilbene compound, and structure function analysis of hundreds of analogs led to the discovery of the SK-03-92 stilbene lead compound with activity against several non-tuberculoid mycobacteria. Methods: For this study, an MIC analysis and intracellular killing assay were performed to test SK-03-92 against M. tuberculosis grown in vitro as well as within murine macrophage cells. Results: The MIC analysis showed that SK-03-92 had activity against M. tuberculosis in the range of 0.39 to 6.25 μg/mL, including activity against single-drug-resistant strains. Further, an intracellular kill assay demonstrated that the SK-03-92 lead compound killed M. tuberculosis cells within murine macrophage cells. Conclusion: Together, the data show the SK-03-92 lead compound can kill M. tuberculosis bacteria within mammalian macrophages. |
---|