Cargando…

Multivariate CNN Model for Human Locomotion Activity Recognition with a Wearable Exoskeleton Robot

This study introduces a novel convolutional neural network (CNN) architecture, encompassing both single and multi-head designs, developed to identify a user’s locomotion activity while using a wearable lower limb robot. Our research involved 500 healthy adult participants in an activities of daily l...

Descripción completa

Detalles Bibliográficos
Autores principales: Son, Chang-Sik, Kang, Won-Seok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525937/
https://www.ncbi.nlm.nih.gov/pubmed/37760184
http://dx.doi.org/10.3390/bioengineering10091082
Descripción
Sumario:This study introduces a novel convolutional neural network (CNN) architecture, encompassing both single and multi-head designs, developed to identify a user’s locomotion activity while using a wearable lower limb robot. Our research involved 500 healthy adult participants in an activities of daily living (ADL) space, conducted from 1 September to 30 November 2022. We collected prospective data to identify five locomotion activities (level ground walking, stair ascent/descent, and ramp ascent/descent) across three terrains: flat ground, staircase, and ramp. To evaluate the predictive capabilities of the proposed CNN architectures, we compared its performance with three other models: one CNN and two hybrid models (CNN-LSTM and LSTM-CNN). Experiments were conducted using multivariate signals of various types obtained from electromyograms (EMGs) and the wearable robot. Our results reveal that the deeper CNN architecture significantly surpasses the performance of the three competing models. The proposed model, leveraging encoder data such as hip angles and velocities, along with postural signals such as roll, pitch, and yaw from the wearable lower limb robot, achieved superior performance with an inference speed of 1.14 s. Specifically, the F-measure performance of the proposed model reached 96.17%, compared to 90.68% for DDLMI, 94.41% for DeepConvLSTM, and 95.57% for LSTM-CNN, respectively.