Cargando…
Multivariate CNN Model for Human Locomotion Activity Recognition with a Wearable Exoskeleton Robot
This study introduces a novel convolutional neural network (CNN) architecture, encompassing both single and multi-head designs, developed to identify a user’s locomotion activity while using a wearable lower limb robot. Our research involved 500 healthy adult participants in an activities of daily l...
Autores principales: | Son, Chang-Sik, Kang, Won-Seok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525937/ https://www.ncbi.nlm.nih.gov/pubmed/37760184 http://dx.doi.org/10.3390/bioengineering10091082 |
Ejemplares similares
-
Real-Time Human Activity Recognition with IMU and Encoder Sensors in Wearable Exoskeleton Robot via Deep Learning Networks
por: Jaramillo, Ismael Espinoza, et al.
Publicado: (2022) -
Locomotion Mode Recognition with Inertial Signals for Hip Joint Exoskeleton
por: Du, Gang, et al.
Publicado: (2021) -
PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons
por: Long, Yi, et al.
Publicado: (2016) -
A Review on Locomotion Mode Recognition and Prediction When Using Active Orthoses and Exoskeletons
por: Moreira, Luís, et al.
Publicado: (2022) -
A Wearable Soft Robotic Exoskeleton for Hip Flexion Rehabilitation
por: Miller-Jackson, Tiana M., et al.
Publicado: (2022)