Cargando…
Emerging Trends in Fast MRI Using Deep-Learning Reconstruction on Undersampled k-Space Data: A Systematic Review
Magnetic Resonance Imaging (MRI) is an essential medical imaging modality that provides excellent soft-tissue contrast and high-resolution images of the human body, allowing us to understand detailed information on morphology, structural integrity, and physiologic processes. However, MRI exams usual...
Autores principales: | Singh, Dilbag, Monga, Anmol, de Moura, Hector L., Zhang, Xiaoxia, Zibetti, Marcelo V. W., Regatte, Ravinder R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525988/ https://www.ncbi.nlm.nih.gov/pubmed/37760114 http://dx.doi.org/10.3390/bioengineering10091012 |
Ejemplares similares
-
K2S Challenge: From Undersampled K-Space to Automatic Segmentation
por: Tolpadi, Aniket A., et al.
Publicado: (2023) -
Fast data-driven learning of parallel MRI sampling patterns for large scale problems
por: Zibetti, Marcelo V. W., et al.
Publicado: (2021) -
Reordering for Improved Constrained Reconstruction from Undersampled k-Space Data
por: Adluru, Ganesh, et al.
Publicado: (2008) -
Optimization of spin-lock times for T(1ρ) mapping of human knee cartilage with bi- and stretched-exponential models
por: de Moura, Hector L., et al.
Publicado: (2022) -
The Empirical Effect of Gaussian Noise in Undersampled MRI Reconstruction
por: Virtue, Patrick, et al.
Publicado: (2017)