Cargando…
Self-FI: Self-Supervised Learning for Disease Diagnosis in Fundus Images
Self-supervised learning has been successful in computer vision, and its application to medical imaging has shown great promise. This study proposes a novel self-supervised learning method for medical image classification, specifically targeting ultra-wide-field fundus images (UFI). The proposed met...
Autores principales: | Nguyen, Toan Duc, Le, Duc-Tai, Bum, Junghyun, Kim, Seongho, Song, Su Jeong, Choo, Hyunseung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526021/ https://www.ncbi.nlm.nih.gov/pubmed/37760191 http://dx.doi.org/10.3390/bioengineering10091089 |
Ejemplares similares
-
Multi-Scale Learning with Sparse Residual Network for Explainable Multi-Disease Diagnosis in OCT Images
por: Bui, Phuoc-Nguyen, et al.
Publicado: (2023) -
Discriminative-Region Multi-Label Classification of Ultra-Widefield Fundus Images
por: Pham, Van-Nguyen, et al.
Publicado: (2023) -
Detection of Stroke with Retinal Microvascular Density and Self-Supervised Learning Using OCT-A and Fundus Imaging
por: Pachade, Samiksha, et al.
Publicado: (2022) -
Delay-Aware Reverse Approach for Data Aggregation Scheduling in Wireless Sensor Networks
por: Nguyen, Dung T., et al.
Publicado: (2019) -
Machine Learning-Based 5G-and-Beyond Channel Estimation for MIMO-OFDM Communication Systems
por: Le, Ha An, et al.
Publicado: (2021)