Cargando…
Functional, Morphological and Molecular Changes Reveal the Mechanisms Associated with Age-Related Vestibular Loss
Age-related loss of vestibular function and hearing are common disorders that arise from the loss of function of the inner ear and significantly decrease quality of life. The underlying pathophysiological mechanisms are poorly understood and difficult to investigate in humans. Therefore, our study e...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526133/ https://www.ncbi.nlm.nih.gov/pubmed/37759828 http://dx.doi.org/10.3390/biom13091429 |
_version_ | 1785110949555863552 |
---|---|
author | Paplou, Vasiliki Georgia Schubert, Nick M. A. van Tuinen, Marcel Vijayakumar, Sarath Pyott, Sonja J. |
author_facet | Paplou, Vasiliki Georgia Schubert, Nick M. A. van Tuinen, Marcel Vijayakumar, Sarath Pyott, Sonja J. |
author_sort | Paplou, Vasiliki Georgia |
collection | PubMed |
description | Age-related loss of vestibular function and hearing are common disorders that arise from the loss of function of the inner ear and significantly decrease quality of life. The underlying pathophysiological mechanisms are poorly understood and difficult to investigate in humans. Therefore, our study examined young (1.5-month-old) and old (24-month-old) C57BL/6 mice, utilizing physiological, histological, and transcriptomic methods. Vestibular sensory-evoked potentials revealed that older mice had reduced wave I amplitudes and delayed wave I latencies, indicating reduced vestibular function. Immunofluorescence and image analysis revealed that older mice exhibited a significant decline in type I sensory hair cell density, particularly in hair cells connected to dimorphic vestibular afferents. An analysis of gene expression in the isolated vestibule revealed the upregulation of immune-related genes and the downregulation of genes associated with ossification and nervous system development. A comparison with the isolated cochlear sensorineural structures showed similar changes in genes related to immune response, chondrocyte differentiation, and myelin formation. These findings suggest that age-related vestibular hypofunction is linked to diminished peripheral vestibular responses, likely due to the loss of a specific subpopulation of hair cells and calyceal afferents. The upregulation of immune- and inflammation-related genes implies that inflammation contributes to these functional and structural changes. Furthermore, the comparison of gene expression between the vestibule and cochlea indicates both shared and distinct mechanisms contributing to age-related vestibular and hearing impairments. Further research is necessary to understand the mechanistic connection between inflammation and age-related balance and hearing disorders and to translate these findings into clinical treatment strategies. |
format | Online Article Text |
id | pubmed-10526133 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105261332023-09-28 Functional, Morphological and Molecular Changes Reveal the Mechanisms Associated with Age-Related Vestibular Loss Paplou, Vasiliki Georgia Schubert, Nick M. A. van Tuinen, Marcel Vijayakumar, Sarath Pyott, Sonja J. Biomolecules Article Age-related loss of vestibular function and hearing are common disorders that arise from the loss of function of the inner ear and significantly decrease quality of life. The underlying pathophysiological mechanisms are poorly understood and difficult to investigate in humans. Therefore, our study examined young (1.5-month-old) and old (24-month-old) C57BL/6 mice, utilizing physiological, histological, and transcriptomic methods. Vestibular sensory-evoked potentials revealed that older mice had reduced wave I amplitudes and delayed wave I latencies, indicating reduced vestibular function. Immunofluorescence and image analysis revealed that older mice exhibited a significant decline in type I sensory hair cell density, particularly in hair cells connected to dimorphic vestibular afferents. An analysis of gene expression in the isolated vestibule revealed the upregulation of immune-related genes and the downregulation of genes associated with ossification and nervous system development. A comparison with the isolated cochlear sensorineural structures showed similar changes in genes related to immune response, chondrocyte differentiation, and myelin formation. These findings suggest that age-related vestibular hypofunction is linked to diminished peripheral vestibular responses, likely due to the loss of a specific subpopulation of hair cells and calyceal afferents. The upregulation of immune- and inflammation-related genes implies that inflammation contributes to these functional and structural changes. Furthermore, the comparison of gene expression between the vestibule and cochlea indicates both shared and distinct mechanisms contributing to age-related vestibular and hearing impairments. Further research is necessary to understand the mechanistic connection between inflammation and age-related balance and hearing disorders and to translate these findings into clinical treatment strategies. MDPI 2023-09-21 /pmc/articles/PMC10526133/ /pubmed/37759828 http://dx.doi.org/10.3390/biom13091429 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Paplou, Vasiliki Georgia Schubert, Nick M. A. van Tuinen, Marcel Vijayakumar, Sarath Pyott, Sonja J. Functional, Morphological and Molecular Changes Reveal the Mechanisms Associated with Age-Related Vestibular Loss |
title | Functional, Morphological and Molecular Changes Reveal the Mechanisms Associated with Age-Related Vestibular Loss |
title_full | Functional, Morphological and Molecular Changes Reveal the Mechanisms Associated with Age-Related Vestibular Loss |
title_fullStr | Functional, Morphological and Molecular Changes Reveal the Mechanisms Associated with Age-Related Vestibular Loss |
title_full_unstemmed | Functional, Morphological and Molecular Changes Reveal the Mechanisms Associated with Age-Related Vestibular Loss |
title_short | Functional, Morphological and Molecular Changes Reveal the Mechanisms Associated with Age-Related Vestibular Loss |
title_sort | functional, morphological and molecular changes reveal the mechanisms associated with age-related vestibular loss |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526133/ https://www.ncbi.nlm.nih.gov/pubmed/37759828 http://dx.doi.org/10.3390/biom13091429 |
work_keys_str_mv | AT paplouvasilikigeorgia functionalmorphologicalandmolecularchangesrevealthemechanismsassociatedwithagerelatedvestibularloss AT schubertnickma functionalmorphologicalandmolecularchangesrevealthemechanismsassociatedwithagerelatedvestibularloss AT vantuinenmarcel functionalmorphologicalandmolecularchangesrevealthemechanismsassociatedwithagerelatedvestibularloss AT vijayakumarsarath functionalmorphologicalandmolecularchangesrevealthemechanismsassociatedwithagerelatedvestibularloss AT pyottsonjaj functionalmorphologicalandmolecularchangesrevealthemechanismsassociatedwithagerelatedvestibularloss |