Cargando…
Features of Protein Unfolding Transitions and Their Relation to Domain Topology Probed by Single-Molecule FRET
A protein fold is defined as a structural arrangement of a secondary structure in a three-dimensional space. It would be interesting to know whether a particular fold can be assigned to certain features of the corresponding folding/unfolding transitions. To understand the underlying principles of th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526189/ https://www.ncbi.nlm.nih.gov/pubmed/37759680 http://dx.doi.org/10.3390/biom13091280 |
_version_ | 1785110962579177472 |
---|---|
author | Bustorff, Nuno Fitter, Jörg |
author_facet | Bustorff, Nuno Fitter, Jörg |
author_sort | Bustorff, Nuno |
collection | PubMed |
description | A protein fold is defined as a structural arrangement of a secondary structure in a three-dimensional space. It would be interesting to know whether a particular fold can be assigned to certain features of the corresponding folding/unfolding transitions. To understand the underlying principles of the manifold folding transitions in more detail, single-molecule FRET is the method of choice. Taking the two-domain protein phosphoglycerate kinase (PGK) as an example, we investigated denaturant-induced unfolded states of PGK using the above method. For this purpose, different intramolecular distances within the two domains were measured. In addition to the known two-state transition, a transition with a compact folding intermediate was also identified in each of the two domains. Based on the structural homology of the domains (characterized by a Rossmann fold) and the striking similarity in the features of the measured distance changes during unfolding, clear evidence emerged that the underlying domain topology plays an important role in determining the observed structural changes. |
format | Online Article Text |
id | pubmed-10526189 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105261892023-09-28 Features of Protein Unfolding Transitions and Their Relation to Domain Topology Probed by Single-Molecule FRET Bustorff, Nuno Fitter, Jörg Biomolecules Article A protein fold is defined as a structural arrangement of a secondary structure in a three-dimensional space. It would be interesting to know whether a particular fold can be assigned to certain features of the corresponding folding/unfolding transitions. To understand the underlying principles of the manifold folding transitions in more detail, single-molecule FRET is the method of choice. Taking the two-domain protein phosphoglycerate kinase (PGK) as an example, we investigated denaturant-induced unfolded states of PGK using the above method. For this purpose, different intramolecular distances within the two domains were measured. In addition to the known two-state transition, a transition with a compact folding intermediate was also identified in each of the two domains. Based on the structural homology of the domains (characterized by a Rossmann fold) and the striking similarity in the features of the measured distance changes during unfolding, clear evidence emerged that the underlying domain topology plays an important role in determining the observed structural changes. MDPI 2023-08-22 /pmc/articles/PMC10526189/ /pubmed/37759680 http://dx.doi.org/10.3390/biom13091280 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bustorff, Nuno Fitter, Jörg Features of Protein Unfolding Transitions and Their Relation to Domain Topology Probed by Single-Molecule FRET |
title | Features of Protein Unfolding Transitions and Their Relation to Domain Topology Probed by Single-Molecule FRET |
title_full | Features of Protein Unfolding Transitions and Their Relation to Domain Topology Probed by Single-Molecule FRET |
title_fullStr | Features of Protein Unfolding Transitions and Their Relation to Domain Topology Probed by Single-Molecule FRET |
title_full_unstemmed | Features of Protein Unfolding Transitions and Their Relation to Domain Topology Probed by Single-Molecule FRET |
title_short | Features of Protein Unfolding Transitions and Their Relation to Domain Topology Probed by Single-Molecule FRET |
title_sort | features of protein unfolding transitions and their relation to domain topology probed by single-molecule fret |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526189/ https://www.ncbi.nlm.nih.gov/pubmed/37759680 http://dx.doi.org/10.3390/biom13091280 |
work_keys_str_mv | AT bustorffnuno featuresofproteinunfoldingtransitionsandtheirrelationtodomaintopologyprobedbysinglemoleculefret AT fitterjorg featuresofproteinunfoldingtransitionsandtheirrelationtodomaintopologyprobedbysinglemoleculefret |