Cargando…
Cross-Sensory EEG Emotion Recognition with Filter Bank Riemannian Feature and Adversarial Domain Adaptation
Emotion recognition is crucial in understanding human affective states with various applications. Electroencephalography (EEG)—a non-invasive neuroimaging technique that captures brain activity—has gained attention in emotion recognition. However, existing EEG-based emotion recognition systems are l...
Autores principales: | Gao, Chenguang, Uchitomi, Hirotaka, Miyake, Yoshihiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526196/ https://www.ncbi.nlm.nih.gov/pubmed/37759927 http://dx.doi.org/10.3390/brainsci13091326 |
Ejemplares similares
-
Influence of Multimodal Emotional Stimulations on Brain Activity: An Electroencephalographic Study
por: Gao, Chenguang, et al.
Publicado: (2023) -
Adaptive filter with Riemannian manifold constraint
por: Mejia, Jose, et al.
Publicado: (2023) -
Data Augmentation for EEG-Based Emotion Recognition Using Generative Adversarial Networks
por: Bao, Guangcheng, et al.
Publicado: (2021) -
Emotion Recognition Based on EEG Using Generative Adversarial Nets and Convolutional Neural Network
por: Pan, Bo, et al.
Publicado: (2021) -
Conditional Adversarial Domain Adaptation Neural Network for Motor Imagery EEG Decoding
por: Tang, Xingliang, et al.
Publicado: (2020)