Cargando…
Self-Assembly of Lipid Molecules under Shear Flows: A Dissipative Particle Dynamics Simulation Study
The self-assembly of lipid molecules in aqueous solution under shear flows was investigated using the dissipative particle dynamics simulation method. Three cases were considered: zero shear flow, weak shear flow and strong shear flow. Various self-assembled structures, such as double layers, perfor...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526246/ https://www.ncbi.nlm.nih.gov/pubmed/37759759 http://dx.doi.org/10.3390/biom13091359 |
Sumario: | The self-assembly of lipid molecules in aqueous solution under shear flows was investigated using the dissipative particle dynamics simulation method. Three cases were considered: zero shear flow, weak shear flow and strong shear flow. Various self-assembled structures, such as double layers, perforated double layers, hierarchical discs, micelles, and vesicles, were observed. The self-assembly behavior was investigated in equilibrium by constructing phase diagrams based on chain lengths. Results showed the remarkable influence of chain length, shear flow and solution concentration on the self-assembly process. Furthermore, the self-assembly behavior of lipid molecules was analyzed using the system energy, particle number and shape factor during the dynamic processes, where the self-assembly pathways were observed and analyzed for the typical structures. The results enhance our understanding of biomacromolecule self-assembly in a solution and hold the potential for applications in biomedicine. |
---|