Cargando…

Characterization of Morphologically Distinct Components in the Tarsal Secretion of Medauroidea extradentata (Phasmatodea) Using Cryo-Scanning Electron Microscopy

Attachment to the substrate is an important phenomenon that determines the survival of many organisms. Most insects utilize wet adhesion to support attachment, which is characterized by fluids that are secreted into the interface between the tarsus and the substrates. Previous research has investiga...

Descripción completa

Detalles Bibliográficos
Autores principales: Thomas, Julian, Gorb, Stanislav N., Büscher, Thies H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526352/
https://www.ncbi.nlm.nih.gov/pubmed/37754190
http://dx.doi.org/10.3390/biomimetics8050439
Descripción
Sumario:Attachment to the substrate is an important phenomenon that determines the survival of many organisms. Most insects utilize wet adhesion to support attachment, which is characterized by fluids that are secreted into the interface between the tarsus and the substrates. Previous research has investigated the composition and function of tarsal secretions of different insect groups, showing that the secretions are likely viscous emulsions that contribute to attachment by generating capillary and viscous adhesion, leveling surface roughness and providing self-cleaning of the adhesive systems. Details of the structural organization of these secretions are, however, largely unknown. Here, we analyzed footprints originating from the arolium and euplantulae of the stick insect Medauroidea extradentata using cryo-scanning electron microscopy (cryo-SEM) and white light interferometry (WLI). The secretion was investigated with cryo-SEM, revealing four morphologically distinguishable components. The 3D WLI measurements of the droplet shapes and volumes over time revealed distinctly different evaporation rates for different types of droplets. Our results indicate that the subfunctionalization of the tarsal secretion is facilitated by morphologically distinct components, which are likely a result of different proportions of components within the emulsion. Understanding these components and their functions may aid in gaining insights for developing adaptive and multifunctional biomimetic adhesive systems.